Water and thermal management in PEMFCs – influencing parameters and operational conditions: A Review

Dewan Hasan Ahmed, Hyung Jin Sung

Abstract


Despite of huge prospects and efforts from the scientists around the world, Proton exchange membrane fuel cell (PEMFC) is still struggling to be commercialized. Numbers of issues are present in PEMFC, having both positive and negative impact on the cell performance. Water content in the membrane as well as the presence of water in the different zones of the PEMFC for wide range of operating conditions plays major role of the cell performance. Situations like: the presence of water content in the membrane, the initial feed of water as humidified reactants, the accumulation of water in the different zones, conversion of water vapor to liquid water in the cell and water removal process can be designated as crucial aspects of water management of the cell. This review article emphasizes different issues which directly and indirectly influence water transportation and thermal management in the cells and their ultimate effects on the fuel cell performance. The dependence of different physical and geometrical properties on water and thermal management is highlighted. Moreover, different operating conditions for fuel cell are discussed based on the water and thermal management along with other aspects which are common in the present research trends of PEM fuel cells. 

Keywords: water management, thermal management, PEMFC, durability, cell performance.

 


Full Text:

PDF

References


Pathapati PR, Xue X, Tang T. A new dynamic model for predicting transient phenomena in a PEM fuel cell system. Renewable Energy 2005;30:1-22.

Jia J, Li Q, Wang Y, Cham YT, Han M. Modeling and Dynamic Characteristic Simulation of a Proton Exchange Membrane Fuel Cell. IEEE Transactions Energy Conversion 2009;24:283-291.

Appleby AJ, Foulkes FR. Fuel Cell Hand Book, 7th Ed., EG&G Technical Services, Inc. U.S. Department of Energy, United States; 2004.

Gencoglu MT, Ural Z. Design of a PEM fuel cell system for residential application. International Journal of Hydrogen Energy 2009;34:5242-5248.

Zhou P, Wu CW, Ma GJ. Contact resistance prediction and structure optimization of bipolar plates. Journal of Power Sources 2006;159:1115–1122.

http://bazylak.mie.utoronto.ca/research/

http://americanhistory.si.edu/fuelcells/pem/pemmain.htm

http://www.transparencymarketresearch.com/pem-fuel-cells-materials.html

Haile SM. Fuel cell materials and components. ActaMaterialia 2013;51:5981-6000.

Hirschenhofer JH, Stauffer DB, Engelman RR, Klett MG. Fuel Cell Handbook, 4th ed. Parsons Corp., for U.S. Dept. of Energy Report No. DOE/FETC-99/1076; 1998.

Ramya K, Velayutham G, Subramaniam CK, Rajalakshmi N, Dhathathreyan KS. Effect of solvents on the characteristics of Nafion®/PTFE composite membranes for fuel cell applications. Journal of Power Sources 2006:160:10–17.

Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. Journal of Power Sources 2001;103(1):1–9.

Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. Journal of Membrane Science 2004;237:145–161.

Yuan XZ, Li H, Zhang S, Martin J, Wang H. A review of polymer electrolyte membrane fuel cell durability test protocols. Journal of Power Sources 2011;96:9107– 9116.

LaConti AB, Hamdan M, McDonald RC. in: Vielstich W, Lamm A, Gasteiger HA. (Eds.), Handbook of Fuel Cells, Wiley, Chichester 2003; vol. 3, p. 647.

Nguyen TV, White RE. A water and heat management model for proton-exchange-membrane fuel cells. Journal of Electrochemical Society 1993;140(8):2178–2186.

Springer TE, Zawodzinski TA, Gottesfeld S. Polymer electrolyte fuel cell model. Journal of Electrochemical Society 1991;138(8):2334–2342.

Fuller TF, Newman J. Water and thermal management in solidpolymer-electrolyte fuel cells. Journal of Electrochemical Society 1993;140(5):1218–1225.

Motupally S, Becker AJ, Weidner JW. Diffusion of Water in Nafion 115 Membranes. Journal of Electrochemical Society 2000;147(9):3171-3177.

Slade S, Campbell SA, Ralph TR, Walsh FC. Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes. Journal of Electrochemical Society 2002;149(12):A1556-A1564.

Garland NL, Benjamin TG, Kopasz JP. Materials Issues in Polymer Electrolyte Membrane Fuel Cells. Material Matters 2008;3(4):85.

Wilson MS, Valerio JA, Gottesfeld S. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochimica Acta 1995;40:355–363.

Burheim OS, Su H, Hauge HH, Pasupathi S, Pollet BG. Study of thermal conductivity of PEM fuel cell catalyst layers. International Journal of Hydrogen Energy 2014;39(17):9397–9408.

Holton OT, Stevenson JW. The Role of Platinum in Proton Exchange Membrane Fuel Cells - Evaluation of platinum’s unique properties for use in both the anode and cathode of a proton exchange membrane fuel cell. Platinum Metals Review 2013;57(4):259–271.

Sethuraman VA, Weidner JW. Analysis of sulfur poisoning on a PEM fuel cell electrode. Electrochimica Acta 2010;55(20):5683-5694.

Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu ZS, Wang H, Shen J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources 2007;165(2):739-756.

Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH, Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochimica Acta 1998;43:3693–3701.

Mathur VK, Crawford J. Fundamentals of Gas Diffusion Layers in PEM Fuel Cells, Recent Trends in Fuel Cell Science and Technology 2007, Springer, p. 116-128.

Gostic JT, Fowler MW, Pritzker MD, Ioannidis MA, Behra LM. In-plane and through-plane gas permeability of carbon fiber electrode backing layers. Journal of Power Sources 2006;162:228–238.

Larminie J, Dicks A. A Fuel cell systems explained. Wiley, West Sussex; 2000.

Cunningham BD, Huang J, Baird DG. Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer. Journal of Power Sources 2007;165(2):764–773.

Cunningham B, Baird DG. The development of economical bipolar plates for fuel cells. Journal of Materials Chemistry 2006;16(45):4385–4388.

Wang Y, Northwood DO. Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells. Electrochimica Acta 2007;52(24):6793–6798.

Li X, Sabir I. Review of bipolar plates in PEM fuel cells: flow-field designs. International Journal of Hydrogen Energy 2005;30(4):359–371.

Shen C, Pan M, Hua Z, Yuan R. Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells. Journal of Power Sources 2007;166(2)419–423.

Karimi S, Fraser N, Roberts B, Foulkes FR. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods. Advances in Materials Science and Engineering 2012;Article ID 828070:22 pages.

Antunes RA, de Oliveira MCL, Ett G, Ett V. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 2011;196(6):2945-2961.

Cooper JS. Design analysis of PEMFC bipolar plates considering stack manufacturing and environment impact. Journal of Power Sources 2004;129(2):152-169.

Davies DP, Adcock PL, Turpin M, Rowen SJ. Stainless steel as a bipolar plate material for solid polymer fuel cells. Journal of Power Sources 2000;86:237-242.

Heinzel A, Mahlendorf F, Niemzig O, Kreuz C. Injection moulded low cost bipolar plates for PEM fuel cells. Journal of Power Sources 2004;131:35-40.

Rashapov RR, Unno J, Gostick JT. Characterization of PEMFC Gas Diffusion Layer Porosity, Journal of Electrochemical Society 2015;162(6):F603-F612.

St-Pierre J. Overview Performance and Operational Conditions. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B, editors. Encyclopedia of Electrochemical Power Sources, Vol 2. Amsterdam: Elsevier; 2009. pp. 901–911.

Yeetsorn R, Fowler MW, Tzoganakis C. A Review of Thermoplastic Composites for Bipolar Plate Materials in PEM Fuel Cells. In: Nanocomposites with Unique Properties and Applications in Medicine and Industry, edited by Cuppoletti J, ISBN 978-953-307-351-4, InTech, August 8, 2011.

Ahmed DH, Sung HJ, Bae J, Lee DR. Reactants Flow Behaviour and Water Management for Different Current Densities in PEMFC. International Journal of Heat and Mass Transfer 2008;51:2006-2019.

Husar A, Strahl S, Riera J. Experimental characterization methodology for the identification of voltage losses of PEMFC: Applied to an open cathode stack. International Journal of Hydrogen Energy 2012;37(8):7309-7315.

Mennola T, Mikkola M, Noponen M, Hottinen T, Lund P. Measurement of ohmic voltage losses in individual cells of a PEMFC stack. Journal of Power Sources 2002;112:261–272.

Falcao DS, Rangel CM, Pinho C, Pinto AMFR. Water transport in PEM Fuel Cells, II Iberian Symposium on Hydrogen. Fuel Cells and Advanced Batteries, Vila Real, September 13th -17th 2009.

Costamagna P. Transport phenomena in polymeric membrane fuel cells. Chemical Engineering Science 2001;56:323–332.

Lum KW, McGuirk JJ. 2D and 3D Modeling of a PEMFC Cathode with Interdigitated Gas Distributors. Journal of Electrochemical Society 2005;152(4):A811–A817.

Maheshwari PH, Singh R, Mathur RB. Effect of the thickness of carbon electrode support on the performance of PEMFC. Journal of Electroanalytical Chemistry 2012;673:32–37.

Lin G, Nguyen TV. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. Journal of Electrochemical Society 2005;152(10)A1942–A1948.

Lee J, Yip R, Antonacci P, Ge N, Kotaka T, Tabuchi Y, Bazylak A. Synchrotron Investigation of Microporous Layer Thickness on Liquid Water Distribution in a PEM Fuel Cell. Journal of The Electrochemical Society 2015;162(7):F669-F676.

Sengul E, Erkan S, Eroglu I, Bac N. Effect of Gas Diffusion Layer Characteristics and Addition of Pore-Forming Agents on the Performance of Polymer Electrolyte Membrane Fuel Cells. Chemical Engineering Communications 2008;196:161–170.

Natarajan D, Nguyen TV. A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. Journal of Electrochemical Society 2001;148(12):A1324–A1335.

Kumar A, Reddy RG. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. Journal of Power Sources 2003;113:11–18.

Guvelioglu GH, Stenger HG. Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells. Journal of Power Sources 2005;147:95–106.

Ahmed DH, Sung HJ. Effects of Channel Geometrical and Shoulder Width on PEMFC Performance at High Current Density. Journal of Power Sources 2006;162:327-339.

Ahmed DH, Sung HJ. Design of a Deflected Membrane Electrode Assembly for PEMFCS. International Journal of Heat and Mass Transfer 2008;51(21-22):5443-5453.

Lee WK, Shimpalee S, Van Zee JW. Verifying Predictions of Water and Current Distributions in a Serpentine Flow Field Polymer Electrolyte Membrane Fuel Cell. Journal of Electrochemical Society 2003;150(3):A341–A348.

Su A, Chiu YC, Weng FB. The impact of flow field pattern on concentration and performance in PEMFC. International Journal of Energy Research 2005;29:409–425.

Hwang JJ, Chen CK, Savinell RF, Liu CC, Wainright J. A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC. Journal of Applied Electrochemistry 2004;34:217–224.

Merida WR, McLean G, Djilali N. Non-planner architecture for proton exchange membrane fuel cells. Journal of Power Sources 2001;102:178–185.

Kuo JK, Chen CK. Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle. Journal of Power Sources 2006;162:1122-1129.

Xing L, Cai Q, Liu X, Liu C, Scott K, Yan Y. Anode partial flooding modelling of proton exchange membrane fuel cells: Optimisation of electrode properties and channel geometries. Chemical Engineering Science 2016;146:88–103.

LaManna JM, Kandlikar SG. Determination of effective water vapor diffusion coefficient in Pemfc gas diffusion layers. International Journal of Hydrogen Energy 2011;36(8):5021–5029.

Muthukumara M, Karthikeyan P, Vairavel M, Loganathan C, Praveenkumar S, Kumar APS. Numerical Studies on PEM Fuel Cell with Different Landing to Channel Width of Flow Channel. Procedia Engineering 2014;97:1534 – 1542.

Shimpalee S, Van Zee JW. Numerical studies on rib & channel dimension of flow-field on PEMFC performance, International Journal of Hydrogen Energy. 2007;32(7):842–856.

Choi KS, Kim HM, Moon SM. Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC. International Journal of Hydrogen Energy 2011;36(2):1613–1627.

Wang XD, Xu JL, Yan WM, Lee DJ, Su A. Transient response of PEM fuel cells with parallel and interdigitated flow field designs. International Journal of Heat and Mass Transfer 2011;54:2375–2386.

Yang YT, Tsai KT, Chen CK. The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels. Journal of Applied Mathematics 2013;Article ID 862645:14 pages.

Liua HC, Yana WM, Soong CY, Chen F. Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell. Journal of Power Sources 2005;142:125–133.

Bazylak A, Sinton D, Liu ZS, Djilali N. Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. Journal of Power Sources 2007;163:784–792.

Mathias M, Roth J, Flemming J, Lehnert W. Diffusion media materials and characterization. In: Vielstich W, Gasteiger HA, Lamm A, editors. Handbook of fuel cells—fundamentals, technology and applications, New York: Wiley; 2003, vol. 3.

Lee WK, Ho CH, Van Zee JW, Murthy M. The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. Journal of Power Sources 1999;84:45–51.

Shi Z, Wang X, Guessous L. Effect of Compression on the water management of a proton exchange membrane fuel cell with different gas diffusion layers. Journal of Fuel Cell Science and Technology 2010;7:021012-1-7.

Pharoah JG. On the permeability of gas diffusion media used in PEM fuel cells. Journal of Power Sources 2005;144:77–82.

Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM. Characterization of gas diffusion layers for PEMFC. Journal of Electrochemical Society 2004;151(8):A1173–80.

Feser JP, Prasad AK, Advani SG. Experimental characterization of in-plane permeability of gas diffusion layers. Journal of Power Sources 2006;162(2):1226–1231.

Gurau V, Bluemle MJ, De Castro ES, Y.M. Tsou YM, Jr. Zawodzinski TA, Jr. Mann JA. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells 2. Absolute permeability. Journal of Power Sources 2007;165:793–802.

Park GG, Sohn YJ, Yang TH, Yoon YG, Lee WY, Kim CS. Effect of PTFE contents in the gas diffusion media on the performance of PEMFC. Journal of Power Sources 2004;131(1-2):182–187.

Tamayol A, McGregor F, Bahrami M. Single phase through-plane permeability of carbon paper gas diffusion layers. Journal of Power Sources 2012;204:94–99.

Mangal P, Pant LM, Carrigy N, Dumontier M, Zingan V, Mitra S, Secanell M. Experimental study of mass transport in PEMFCs: Through plane permeability and molecular diffusivity in GDLs. Electrochimica Acta 2015;167:160–171.

Ahmed DH, Sung HJ, Bae J. Effect of GDL Permeability on Water and Thermal Management in PEMFCs – I. Isotropic and Anisotropic Permeability. International Journal of Hydrogen Energy 2008;33(14):3767-3785.

Ahmed DH, Sung HJ, Bae J. Effect of GDL Permeability on Water and Thermal Management in PEMFCs – II. Clamping Force. International Journal of Hydrogen Energy 2008;33(14):3786-3800.

Al-Baghdadi MARS, Al-Janabia HAKS. Effect of operating parameters on the hygro–thermal stresses in proton exchange membranes of fuel cells. International Journal of Hydrogen Energy 2007;17:4510-4522.

Yan WM, Chen CY, Mei SC, Soong CY, Chen F. Effects of operating conditions on cell performance of PEM fuel cells with conventional or interdigitated flow field. Journal of Power Sources 2006;162:1157–1164.

Pérez-Page M, Pérez-Herranz V. Effect of the Operation and Humidification Temperatures on the Performance of a Pem Fuel Cell Stack on Dead-End Mode. International Journal of Electrochemical Science 2011;6:492-505.

Saleh MM, Okajima T, Hayase M, Kitamura F, Ohsaka T. Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H2/air PEM fuel cell at different temperatures. Journal of Power Sources 2007;164 (2) (2007) 503–509.

Wang L, Husar A, Zhou T, Liu H. A parametric study of PEM fuel cell performances. International Journal of Hydrogen Energy 2003;28(11):1263-1272.

Amirinejad M, Rowshanzamir S, Eikani MH. Effects of operating parameters on performance of a proton exchange membrane fuel cell. Journal of Power Sources 2006;161:872-875.

Wang DX, Duan YY, Yan WM, Weng FB. Effect of humidity of reactants on the cell performance of PEM fuel cells with parallel and interdigitated flow field designs. Journal of Power Sources 2008;176:247-258.

Wang M, Guo H, Ma C. Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed. Journal of Power Sources 2006;157:181–187.

Hyun D, Kim J. Study of external humidification method in PEMFC. Journal of Power Sources 2004;126:98–103.

Jung SH, Kim SL, Kim MS, Park Y, Lim TW. Experimental study of gas humidification with injectors for automotive PEM fuel cell systems. Journal of Power Sources 2007;170:324–333.

Cho J, Ha T, Park J, Kim HS, Min K, Lee E, Jyoung JY. Analysis of transient response of a unit proton-exchange membrane fuel cell with a degraded gas diffusion layer. International Journal of Hydrogen Energy 2011;36(10):6090–6098.

Casalegno A, DeAntonellis S, Colombo L, Rinaldi F. Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell. International Journal of Hydrogen Energy 2011;36:5000–5009.

Yu S, Im S, Kim S, Hwang J, Lee Y, Kang S, Ahn K. A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. International Journal of Heat and Mass Transfer 2011;54:1344–1351.

Zhang LZ, Huang SM. Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification. International Journal of Heat and Mass Transfer 2011;54:1055–1063.

Chung-Hsing C, Tien-Chien J. A new humidification and heat control method of cathode air for a PEM fuel cell stack. International Journal of Heat and Mass Transfer 2013;58:117–124.

Zeroual M, Bouzida SB, Benmoussa H, Bouguettaia H. Numerical study of the effect of the inlet pressure and the height of gas channel on the distribution and consumption of reagents in a fuel cell (PEMFC). Energy Procedia 2012;18:205-214.

Murthy M, Esayian M, Lee WK, Van Zee JW. The Effect of Temperature and Pressure on the Performance of a PEMFC Exposed to Transient CO Concentrations. Journal of The Electrochemical Society 2003;150:A29-A34.

Kerkoub Y, Ziari YK, Benzaoui A. Effect of Pressure in Proton Exchange Membrane Fuel Cell (PEMFC). International Journal of Energy Engineering 2013;3(3):158-164.

Mennola T, Noponen M, Aronniemi M, Hottinen T, Mikkola M, Himanen O, Lund P. Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell. Journal of Applied Electrochemistry 2003;33(11):979–987.

Dhathathreyan KS, Rajalakshmi N, Jayakumar K, Pandian S. Forced Air-Breathing PEMFC Stacks. International Journal of Electrochemistry 2012;Volume 2012:Article ID 216494, 7 pages.

O’Hayre R, Fabian T, Litster S, Prinz FB, Santiago JG. Engineering model of a passive planar air breathing fuel cell cathode. Journal of Power Sources 2007;167:118–129.

Kahveci EE, Taymaz I. Effect of Humidification of the Reactant Gases in the Proton Exchange Membrane Fuel Cell. Journal of Clean Energy Technologies 2015;3(5):356-359.

Xing L, Cai Q, Xu C, Liu C, Scott K, Yan Y. Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modeling. Energy 2016;106:631-645.

Zhang Z, Jia L, Wang X, Ba L. Effects of inlet humidification on PEM fuel cell dynamic behaviors. Int. J. Energy Res., 2011;35(5):376-388.

Jian QF, Ma GQ, Qiu XL. Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field. Renewable Energy 2014;62:129-136.

Sun H, Zhang G, Guo LJ, Dehua S, Liu H. Effects of humidification temperatures on local current characteristics in a PEM fuel cell. Journal of Power Sources 2007;168(2):400-407.

Devrim Y, Devrim H, Eroglu I. Development of 500 W PEM fuel cell stack for portable power generators. International Journal of Hydrogen Energy 2015;40(24):7707–7719.

Espinoza M, Andersson M, Yuan J, Sundén B, Compress effects on porosity, gas-phase tortuosity, and gas permeability in a simulated PEM gas diffusion layer. International Journal of Energy Research, 2015;39 :1528-1536.

Kotaka T, Tabuchi Y, Pasaogullari U, Wang CY. Impact of Interfacial Water Transport in PEMFCs on Cell Performance. Electrochimica Acta 2014;146:618–629.

Belkhiri Z, Moussa HB, Haddad D, Oulmi K. Effect of permeability on the dynamic field in the PEM fuel cell. International Journal of Hydrogen Energy 2015;40(39):13789–13798.

Cheema TA, Kim GM, Lee CY, Kwak MK, Kim HB, Park CW. Effects of Composite Porous Gas-Diffusion Layers on Performance of Proton Exchange Membrane Fuel Cell. International Journal of Precision Engineering and Manufacturing-Green Technology 2014;1(4):305-312.

Parikh N, Allen JS, Yassar RS. Microstructure of Gas Diffusion Layers for PEM Fuel Cells. Fuel Cells 2012;12(3):382-390.

Razali MZB, Abdullah ARB, Mohamed WANW, Khiar MSA. Effect of Hydrogen Inlet Pressure Analysis on open Voltage of Proton Exchange Membrane (PEM) Fuel cell by using Periodogram. Australian Journal of Basic and Applied Sciences 2015;9(12):86-92.

Mahmah B, Morsli G, Belacel M, Benmoussa H, Achachera S, Benhamou A, Belhamel M. Dynamic Performance of Fuel Cell Power Module for Mobility Applications, Engineering 2013;5:219-229.

Lee PH, Hwang SS. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels. Sensors 2009;9:9104-9121.

Guo Q, Cayetano M, Tsou Y, De Castro ES, White RE. Study of Ionic Conductivity Profiles of the Air Cathode of a PEMFC by AC Impedance Spectroscopy. Journal of The Electrochemical Society 2003;150(11):A1440-A1449.

Li G, Pickup PG. Ionic Conductivity of PEMFC Electrodes Effect of Nafion Loading, , J. Electrochem. Soc. 2003;150(11):C745-C752.

Luo Z, Chang Z, Zhang Y, Liu Z, Li J, Electro-osmotic drag coefficient and proton conductivity in Nafion® membrane for PEMFC. International Journal of Hydrogen Energy; 2010;35(7):3120–3124.

Nitta I, Himanen O, M. Mikkola M. Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell. FUEL CELLS 2008;08(2):111-119.

Wang ZH, Wang CY, Chen KS. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources 2001;94(1):40–50.

Leverett MC. Capillary behavior in porous solids. Society of Petroleum Engineers 1941;142:152–169.

Udell KS. Heat transfer in porous media considering phase change and capillarity-the heat pipe effect. International Journal of Heat and Mass Transfer 1985;28(2):485-495.

Kumbur EC, Sharp KV, Mench MM. On the effectiveness of Leverett approach for describing the water transport in fuel cell diffusion media. Journal of Power Sources 2007;168(2)356-368.

Si C, Wang XD, Yan WM, Wang TH. A Comprehensive Review on Measurement and Correlation Development of Capillary Pressure for Two-Phase Modeling of Proton Exchange Membrane Fuel Cells. Journal of Chemistry 2015;Volume 2015;Article ID 876821, 17 pages.

Kumbur EC, Sharp KV, Mench MM. Validated Leverett approach for multiphase flow in PEFC diffusion media. I. Hydrophobicity effect. Journal of the Electrochemical Society 2007;154(12):B1295–B1304.

Kumbur EC, Sharp KV, Mench MM. Validated Leverett approach for multiphase flow in PEFC diffusion media: II. Compression effect. Journal of the Electrochemical Society 2007;154(12):B1305–B1314.

Kumbur EC, Sharp KV, Mench MM. Validated Leverett approach for multiphase flow in PEFC diffusion media: III. Temperature effect and unified approach. Journal of the Electrochemical Society 2007;154(12):B1315–B1324.

Gostick JT, Ioannidis MA, Fowler MW, Pritzker MD. Direct measurement of the capillary pressure characteristics of water-air-gas diffusion layer systems for PEM fuel cells. Electrochemistry Communications 2008;10(10):1520–1523.

Koido T, Furusawa T, Moriyama K. An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell. Journal of Power Sources 2008;175(1):127–136.

Hao L, Cheng P. Capillary pressures in carbon paper gas diffusion layers having hydrophilic and hydrophobic pores. International Journal of Heat and Mass Transfer 2012;55(1-3):133–139.

Satterfield MB, Benziger JB. Non-Fickian Water Vapor Sorption Dynamics by Nafion Membranes. J. Phys. Chem. B 2008;112:3693-3704.

Xing L, Das PK, Song X, Mamlouk M, Scott K. Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion®ionomer content and cathode relative humidity. Applied Energy 2015;138:242–257.

Zhao Q, Majsztrik P, Benziger J. Diffusion and Interfacial Transport of Water in Nafion. J. Phys. Chem. B 2011;115:2717–2727.

Owejan JP, Gagliardo JJ, Sergi JM, Kandlikar SG, Trabold TA. Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water distributions. International Journal of Hydrogen Energy 2009;34:3436-3444.

Maier W, Arlt T, Wannek C, Manke I, Riesemeier H, Krüger P, Scholta J, Lehnert W, Banhart J, Stolten D. In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells. Electrochemistry Communications 2010;12(10):1436–1438.

Litster S, Sinton D, Djilali N. Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers. Journal of Power Sources 2006;154:95–105.

Feindel KW, Bergens SH, Wasylishen RE. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy. Physical Chemistry Chemical Physics 2007;9:1850.

Cattaneo AS, Villa DC, Angioni S, Ferrara C, Melzi R, Quartarone E, Mustarelli P. Operando electrochemical NMR microscopy of polymer fuel cells. Energy and Environmental Science 2015;8:2383-2388.

Tsushima S, Nanjo T, Nishida K, Hirai S. Investigation of the Lateral Water Distribution in a Proton Exchange Membrane in Fuel Cell Operation by 3D-MRI. ECS Transactions 2006;1:199-205.

Bedet J, Maranzana G, Leclerc S, Lottin O, Moyne C, Stemmelen D, Mutzenhardt P, Canet D. Magnetic resonance imaging of water distribution and production in a 6 cm2 PEMFC under operation. International Journal of Hydrogen Energy 2008;33(12):3146–3149.

Kandlikar S. Microscale and macroscale aspects of water management challenges in PEM fuel cells. Heat Transfer Eng 2008;29:575-587.

Kumbur EC, Sharp KV, Mench MM. Liquid droplet behavior and instability in a polymer electrolyte fuel cell flow channel. Journal of Power Sources 2006;161:333-345.

Sergi JM, Kandlikar SG. Quantification and characterization of water coverage in PEMFC gas channels using simultaneous anode and cathode visualization and image processing. International Journal of Hydrogen Energy 2011;36(19):12381–12392.

Gopalana P, Kandlikar SG. Effect of Channel Material on Water Droplet Dynamics in a PEMFC Gas Channel. Journal of The Electrochemical Society 2013;160(6):F487-F495.

Zhang FY, Yang XG, Wang CY. Liquid Water Removal from a Polymer Electrolyte Fuel Cell. Journal of Electrochemical Society 2006;153(2):A225-A232.

Lu Z, Rath C, Zhang G, Kandlikar SG. Water management studies in PEM fuel cells, part IV: Effects of channel surface wettability, geometry and orientation on the two-phase flow in parallel gas channels. International Journal of Hydrogen Energy 2011;36(16):9864-9875.

Cai YH, Hu J, Ma HP, Yi BL, Zhang HM. Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell. Journal of Power Sources 2006;161:843–848.

Qina Y, Lia X, Jiaoa K, Dua Q, Yin Y. Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate. Applied Energy 2014;113:116-126.

Lee CY, Lee YM, Lee SJ. Local Area Water Removal Analysis of a Proton Exchange Membrane Fuel Cell under Gas Purge Conditions. Sensors (Basel) 2012;12(1):768-783.

Raman KA, Mondal B, Li X. Water Droplet Transport in Single Gas Flow Channel of PEM Fuel Cell. International Journal of Advances in Thermal Sciences and Engineering 2011;2(1):27-33.

Colosqui CE, Cheah MJ, Kevrekidis IG, Benziger JB. Droplet and slug formation in polymer electrolyte membrane fuel cell flow channels: The role of interfacial forces. Journal of Power Sources 2011;196:10057– 10068.

Das PK, Grippin A, Kwong A, Weber AZ. Liquid-Water-Droplet Adhesion-Force Measurements on Fresh and Aged Fuel-Cell Gas-Diffusion Layers. Journal of The Electrochemical Society 2012;159(5):B489-B496.

Chen L, Luan HB, He YL, Tao WQ. Numerical Investigation of Liquid Water Transport and Distribution in Porous Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell Using Lattice Boltzmann Method. Russian Journal of Electrochemistry 2012;48(7):712–726.

Hwang JJ. Effect of hydrogen delivery schemes on fuel cell efficiency. Journal of Power Sources 2013;239:54–63.

Chen J, Siegel JB, Stefanopoulou AG, Waldecker JR. Optimization of purge cycle for dead-ended anode fuel cell operation. International Journal of Hydrogen Energy 2013;38:5092-5105.

Gomez A, Sasmito AP, Shamim T. Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle. Energy Conversion and Management 2015;106:951–957.

Piffard M, Gerard M, Bideaux E, Fonseca RD, Massioni P. Control by state observer of PEMFC anodic purges in dead-end operating mode. IFAC-Papers OnLine 2015;48-15:237–243.

Matsuura T, Chen J, Siegel JB, Stefanopoulou AG. Degradation phenomena in PEM fuel cell with dead-ended anode. Int J Hydrogen Energy 2013;38:11346–56.

Dumercy L, Pera MC, Glises R, Hisel D, Hamandi S, Badin F, Kauffman JM, PEFC Stack Operating in Anodic Dead End Mode. Fuel Cells 2004;4:352-357.

Sasmito AP, Ali MI, Shamim T. A Factorial Study to Investigate the Purging Effect on the Performance of a Dead-End Anode PEM Fuel Cell Stack. FUEL CELLS 2015;15(1):160–169.

Spernjak D, Fairweather JD, Rockward T, Mukundan R, Borup RL. Influence of the microporous layer on carbon corrosion in the catalyst layer of a polymer electrolyte membrane fuel cell. J. Power Sources 2012;214:386-398.

Durst J, Lamibrac A, Charlot F, Dillet J, Castanheira LF, Maranzana G, Dubau L, Maillard F, Chatenet M, Lottin O. Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: Inlet vs. outlet and channel vs. land. Applied Catalysis B: Environmental 2013;138-139:416-426.

Abbou S., Dillet J, Spernjak D, Mukundan R, Borup RL, G. Maranzana G, Lottin O. High Potential Excursions during PEM Fuel Cell Operation with Dead-Ended Anode. Journal of The Electrochemical Society 2015;162(10):F1212-F1220.

Siegel JB, McKay DA, Stefanopoulou AG, Hussey DS, Jacobson DL. Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode. Journal of The Electrochemical Society 2008;155(11):B1168-B1178.

Chen J, Siegel JB, Matsuura T, Stefanopoulou AG. Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations. Journal of The Electrochemical Society 2011;158(9):B1164-B1174.

Meyer Q, Ashton S, Curnick O, Reisch T, Adcock P, Ronaszegi K, Robinson JB, Brett DJL, Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging. Journal of Power Sources 2014;254:1- 9.

Yang C, Moon S, Kim Y. A self-operated polymer electrolyte fuel cell system operating at dead-end conditions using pure hydrogen and oxygen gases. Journal of Mechanical Science and Technology 2015;29(8):3541-3547.

Meng H. Numerical studies of cold-start phenomenon in PEM fuel cells, ElectrochimicaActa 2008;53:6521-6529.

Syed AH, Ahmed DH, Sung HJ. Performance of sub-cooled PEMFCs. International Journal of Energy Research 2011,35:365-375.

Yan Q, Toghiani H, Lee YW, Liang K, Causey H. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. Journal of Power Sources 2006;160(2):1242-1250.

Morin A, Peng Z, Jestin J, Detrez M, Gebel G. Water management in proton exchange membrane fuel cell at sub-zero temperatures: An in operando SANS-EIS coupled study. Solid State Ionics 2013;252:56-61.

Cho EA, Ko JJ, Ha HY, Hong SA, Lee KY, Lim TW, Oh IH. Characteristics of the PEMFC repetitively brought to temperature below 0oC, Journal of the Electrochemical Society 150 (12) (2003) A1667-A1670.

E.A. Cho, J.J. Ko, H.Y. Ha, S.A. Hong, K.Y. Lee, T.W. Lim, I.H. Oh, Effect of water removal on the performance degradation of PEMFCs repetitively brought to 0oC. Journal of the Electrochemical Society 2004;151(5):A661-A665.

http://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf

Schmittinger W, Vahidi A. A review of the main parameters influencing long term performance and durability of PEM fuel cells. Journal of Power Sources 2008;180(1):1-14.

Wood DL, Borup RL In: Buchi MIFN, Schmidt TJ, editors. Polymer electrolyte fuel cell durability. New York: Springer; 2009. p. 159.

Knights SD, Colbow KM, St-Pierre J, Wilkinson DP. Aging mechanisms and lifetime of PEFC and DMFC. Journal of Power Sources 127 (2004) 127–134.

Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 2011;88:981-1007.

de Bruijn FA, Dam VAT, Janssen GJM. Review: Durability and Degradation Issues of PEM Fuel Cell Components. FUEL CELLS 2008;08(1):3-22.

Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, W. Merida W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources 2008;184:104–119.


Refbacks

  • There are currently no refbacks.