Open Access Open Access  Restricted Access Subscription Access

A Voltage Controlled Distribution Grids by DSTATCOM

G. Kishor Babu


In distribution system to controlled the power flow by DSTATCOM. The voltage regulator is designed to provisionally assemble the grid system, delaying unexpected speculations while an ultimate result might be considered to unravel parameter problems. The power stage is created of a three leg Voltage Source Inverter (VSI) and a LC filter. The direct tactic has 3 output voltage loops with dynamic damping and two DC bus voltage loops. In calculation further loops are integrated to the anticipated organize tactic. The model of Minimum–Power-Point-Tracking (MPPT) and the frequency loop. The minimum power point tracking tolerates the voltage regulator to operate at the minimum power point, shunning the transmission of superfluous reactive damages. The frequency loop tolerates the voltage controller to be self-regulating of the grid voltage in sequence, above all the grid position using only in sequence available at the Point-Common-Coupling (PCC). Simulation outcomes illustrate the parameter ability the characteristics of the MPPT algorithm for linear and nonlinear loads and the frequency permanence.

Full Text:



ANEEL National Electric Power Distribution System Procedures (2014), “PRODIST, Module 8: Energy Quality”, 7th Revision.

M. Mishra, A. Ghosh and A. Joshi (2003), “Operation of a DSTATCOM in voltage control mode”, IEEE Trans. Power Del., Volume 18, Issue 1, pp. 258-264, Available at:

G. Ledwich and A. Ghosh (2002), “A flexible DSTATCOM operating in voltage or current control mode”, IEE Proc.-Gener., Transmiss. Distrib., Volume 149, Issue 2, pp. 215-224, Available at: document/998023.

T. P. Enderle, G. da Silva, C. Fischer, R. C. Beltrame, L. Schuch, V. F. Montagner and C. Rech (2012), “D-STATCOM applied to single-phase distribution networks: Modeling and control”, in Proc. IEEE Ind. Electron. Soc. Annu. Conf., pp. 321 – 326, Available at:

C. Kumar and M. Mishra (2013), “Energy conservation and power quality improvement with voltage controlled DSTATCOM”, in Proc. Annu. IEEE India Conf., pp. 1-6, Available at: document/6726134.

R. T. Hock, Y. R. De Novaes and A. L. Batschauer (2014), “A voltage regulator based in a voltage-controlled DSTATCOM with minimum power point tracker”, in Proc. IEEE Energy Convers. Congr. Expo., pp. 3694-3701, Available at: https://ieeexplore.

B. Singh, R. Saha, A. Chandra and K. Al-Haddad (2009), “Static synchronous compensators (STATCOM): a review”, IET Power Electron., Volume 2, Issue 4, pp. 297-324, Available at: https://ieeexplore.

C. Kumar and M. Mishra (2014), “A Multifunctional DSTATCOM Operating Under Stiff Source”, IEEE Trans. Ind. Electron., Volume 61, Issue 7, pp. 3131-3136, Available at: document/6575128.

C. Kumar and M. Mishra (2014), “A Voltage-Controlled DSTATCOM for Power-Quality Improvement”, IEEE Trans. Power Del., Volume 29, Issue 3, pp. 1499-1507, Available at: https://ieeexplore.

S. H. Ko, S. Lee, H. Dehbonei and C. Nayar (2006), “Application of voltage-and current-controlled voltage source inverters for distributed generation systems”, IEEE Trans. Energy Conv., Volume 21, Issue 3, pp. 782-792, Available at: https://ieeexplore.

R. T. Hock, Y. R. De Novae’s and A. L. Batschauer (2015), “Frequency Compensation for Stand Alone Voltage-controlled DSTATCOM”, in Proc. Brazilian Power Electron. Conf. and Southern Power Electron. Conf., pp. 1-6, Available at: https://ieeexplore.

T. Esram and P. Chapman (2007), “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Trans. Energy Conv., Volume 22, Issue 2, pp. 439-449, Available at: https://ieeexplore.

Al-Diab e C. Sourkounis (2010), “Multi-tracking single-fed PV inverter”, in Proc. 15th IEEE Mediterranean Electro. tech. Conf., pp. 1117-1122, Available at:

M. de Brito, L. Galotto, L. Sampaio, G. de Azevedoe Melo and C. Canesin (2013) “Evaluation of the Main MPPT Techniques for Photovoltaic Applications”, IEEE Trans. Ind. Electron., Volume 60, Issue 3, pp. 1156-1167, Available at: document/6196220.

F. Ansari, A. Iqbal, S. Chatterji and A. Afzal (2009), “Control of MPPT for photovoltaic systems using advanced algorithm EPP”, in Proc. 3rd Int. Conf. Power Syst., pp. 1-6, Available at: abstract/document/5442714.

S. Jain and V. Agarwal (2007), “Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems”, IET Elect. Power Appl., Volume 1, Issue 5, pp. 753–762, Available at:

Y. Jiang, J. Qahouq and T. Haskew (2013), “Adaptive Step Size With Adaptive-Perturbation-Frequency Digital MPPT Controller for a Single- Sensor Photovoltaic Solar System”, IEEE Trans. Power Electron., Volume 28, Issue 7, pp. 3195-3205, Available at:

D. Sera, L. Mathe, T. Kerekes, S. V. Spataru, and R. Teodorescu (2013), “On the perturb-and-observe and incremental conductance MPPT methods for PV systems”, IEEE J. Photovoltaic, Volume 3, Issue 3, pp. 1070–1078, Available at:

N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli (2005), “Optimization of perturb and observe maximum power point tracking method”, IEEE Trans. Power Electron., Volume 20, Issue 4, pp. 963-973, Available at:

J. Prasanth Ram; N. Rajasekar (2017), “A novel Flower Pollination based Global Maximum Power Point method for Solar Maximum Power Point Tracking”, IEEE Trans. Power Electron., Volume 32, Issue 11, pp. 8486-8499, Available at:

C. Manickam, G. P. Raman, G. R. Raman, S. I. Ganesan and N. Chilakapati (), “Fireworks Enriched P&O Algorithm for GMPPT and Detection of Partial Shading in PV Systems,” IEEE Trans. Power Electron., Volume 32, Issue 6, pp. 4432-4443, Available at: 7556395.


  • There are currently no refbacks.