Bitcoin Fraud Detection using Data Mining Approach
Abstract
Full Text:
PDFReferences
Patrick Monamo, Vukosi Marivate, Bheki Twala, ’Unsupervised Learning for Robust Bitcoin Fraud Detection ’, IEEE, 2016.
Andrew Miller ’SOK: Research Perspectives and Challenges for Bitcoin and Crypto currencies’, 2013.
Deepak Zambre, Ajey Shah ’Analysis of Bitcoin Network Dataset for Fraud ’, 2013.
Stevan Lee, Phillip Thai Pham ’Anomaly Detection in Bitcoin Network Using Unsupervised Learning Method ’, 2010.
Archana Singh, Ajay Rana ’K-Means with Trhee different Metric’, 2013.
Marchin Andrew Chowicz ’SEcure Multiparty Computations on Bitcoin’, IEEE,2015.
Alfonso Gordaliza ’Robustness properties of K-means and Trimmed K-means’, IEEE,2012.
Andrew Blundell Wignall ’The Bitcoin Questions : Currency versus Trust-less Transfer Technology ’, IEEE,2016.
Coinbeyond News, ‘Anatomy of hdm structure’, 2014.
Archana Singh, Avantika Yadav, and Ajay Rana. ‘K-means with three different distance metrics.’ International Journal of Computer Applications, 2013.
EWT Ngai, Yong Hu, YH Wong, Yijun Chen, and Xin Sun, ‘the
application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature’, Decision Support Systems, 2011.
Refbacks
- There are currently no refbacks.