Open Access Open Access  Restricted Access Subscription Access

Assessment of Land Use and Land Cover Change Detection Using Eleven Techniques of Satellite Remote Sensing in the Pao River Basin, Venezuela

Dr. Adriana Marquez Romance, Dr. Edilberto Guevara Pérez, Dr. Demetrio Rey Lago

Abstract


In this investigation the land use and land cover change detection are applied on the Pao river basin, which is a study unit that is composed by the LULC: agricultural, rangeland, urban, water, vegetation and degraded soil.  This study includes the five stages following: 1) data acquisition, 2) data preliminary processing, 3) change detection techniques application, 4) threshold analysis, 5) method result comparing. Eleven change detection methods have been evaluated; ten of these are classified like a methods based on pixels and the last corresponds to the classified object method. Eleven images are acquired from the Landsat satellite in the period between 1986 and 2016. The comparison of the results depicted by the area change detection methods based on post-classification using Maximum Likelihood (ML), Artificial Neural Net (ANN)  and Support Vector Machine (SVM) algorithms expressed by the area change detection percentage according each class: a) U: Urban: 18 to 40%; 30 to 50%; 30 to 50%, b) A: Agricultural: 85 to 95% 80 to 90%, 80 to 90% c) R: Rangeland: 80 to 95%, 90 to 95%, 90 to 95%, d) W: Water: 10 to 20%; 15 to 20%, 15 to 20%, e) V: Vegetation: 5 to 10%, 10 to 20%, 10 to 20%, f) D.S.: Degraded Soil: 55 to 60%, 15 to 40%, 15 to 40% g) C: Clouds: 85 to 100%, 95 to 100%, 95 to 100%, h) Sh: Shadows: 95 to 100%, 95 to 100%, 95 to 100% . The change detection method based on the pixel with the most capability for estimating is the principal components using the component N° 1 compared with the rest of the methods image difference, image ratioing, image regression and normalized difference vegetation index. The classified object method requires to be reviewed in the segmentation process.

 


Full Text:

PDF

References


Abuelgasim, A. A., Ross, W. D., Gopal, S., & Woodcock, C. E. (1999). Change detection using adaptive fuzzy neural networks: environmental damage assessment after the Gulf War. Remote Sensing of Environment, 70(2), 208-223.

Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.

Blaschke, T., Hay, G. J., Weng, Q., & Resch, B. (2011). Collective sensing: Integrating geospatial technologies to understand urban systems—An overview. Remote Sensing, 3(8), 1743-1776.

Bontemps, S., Bogaert, P., Titeux, N., & Defourny, P. (2008). An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution. Remote Sensing of Environment, 112(6), 3181-3191.

Bovolo, F., Bruzzone, L., & Marconcini, M. (2008). A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 2070-2082.

Burns, G. S., and Joyce, A. T., 1981, Evaluation of land cover change detection techniques using Landsat MSS data. Proceedings of the 7th PECORA Symposium, Sioux Falls, SD, USA (Bethesda, MD: ASPRS), pp. 252–260.

Byrne, G. F., Crapper, P. F., & Mayo, K. K. (1980). Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote sensing of Environment, 10(3), 175-184.

Cakir, H. I., Khorram, S., & Nelson, S. A. (2006). Correspondence analysis for detecting land cover change. Remote Sensing of Environment, 102(3-4), 306-317.

Crist, E. P., & Kauth, R. J. (1986). The Tasseled Cap de-mystified. Photogrammetric Engineering & Remote Sensing, 52(1): 81-86.

Chan, J. C. W., Chan, K. P., & Yeh, A. G. O. (2001). Detecting the nature of change in an urban environment: A comparison of machine learning algorithms. Photogrammetric Engineering and Remote Sensing, 67(2), 213-226.

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.

Chen, J., Gong, P., He, C., Pu, R., & Shi, P. (2003). Land-use/land-cover change detection using improved change-vector analysis. Photogrammetric Engineering & Remote Sensing, 69(4), 369-379.

Chen, Z., & Wang, J. (2010). Land use and land cover change detection using satellite remote sensing techniques in the mountainous Three Gorges Area, China. International Journal of Remote Sensing, 31(6), 1519-1542.

Collins, J. B., & Woodcock, C. E. (1996). An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote sensing of environment, 56(1), 66-77.

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Review Article Digital change detection methods in ecosystem monitoring: a review. International journal of remote sensing, 25(9), 1565-1596.

Dai, X. L., & Khorram, S. (1999). Remotely sensed change detection based on artificial neural networks. Photogrammetric engineering and remote sensing, 65, 1187-1194.

Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote Sensing of Environment, 102(1-2), 1-11.

De Chant, T., & Kelly, M. (2009). Individual object change detection for monitoring the impact of a forest pathogen on a hardwood forest. Photogrammetric Engineering & Remote Sensing, 75(8), 1005-1013.

Dewidar, K. M. (2004). Detection of land use/land cover changes for the northern part of the Nile delta (Burullus region), Egypt. International journal of remote sensing, 25(20), 4079-4089.

Du, Y., Teillet, P. M., & Cihlar, J. (2002). Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote sensing of Environment, 82(1), 123-134.

Durieux, L., Lagabrielle, E., & Nelson, A. (2008). A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), 399-408.

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote sensing of environment, 80(1), 185-201.

Foody, G. M., & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on geoscience and remote sensing, 42(6), 1335-1343.

Fung, T., & LeDrew, E. (1987). Application of principal components analysis to change detection. Photogrammetric engineering and remote sensing, 53(12), 1649-1658.

Han, L., & Rundquist, D. C. (1997). Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote sensing of Environment, 62(3), 253-261.

Howarth, P. J., & Wickware, G. M. (1981). Procedures for change detection using Landsat digital data. International Journal of Remote Sensing, 2(3), 277-291.

Huang, C., Wylie, B., Yang, L., Homer, C., & Zylstra, G. (2002). Derivation of a Tasseled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23(8), 1741-1748.

Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91-106.

Im, J., & Jensen, J. R. (2005). A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sensing of Environment, 99(3), 326-340.

Ingebritsen, S. E., & Lyon, R. J. P. (1985). Principal components analysis of multitemporal image pairs. International Journal of Remote Sensing, 6(5), 687-696.

Jensen, J. R. (2009). Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India.

Johnson, R. D., & Kasischke, E. S. (1998). Change vector analysis: a technique for the multispectral monitoring of land cover and condition. International Journal of Remote Sensing, 19(3), 411-426.

Joseph, G. (2005). Fundamentals of remote sensing. Universities press.

Ju, J., & Roy, D. P. (2008). The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment, 112(3), 1196-1211.

Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357-1381.

Kauth, R. J., & Thomas, G. S. (1976, January). The Tasseled cap--a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In LARS Symposia (p. 159).

Laliberte, A. S., Rango, A., Havstad, K. M., Paris, J. F., Beck, R. F., McNeely, R., & Gonzalez, A. L. (2004). Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sensing of Environment, 93(1-2), 198-210.

Lefebvre, A., Corpetti, T., & Hubert-Moy, L. (2008, July). Object-oriented approach and texture analysis for change detection in very high resolution images. In Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE international (Vol. 4, pp. IV-663). IEEE.

Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. John Wiley & Sons.

Lodhi, M. A., Rundquist, D. C., Han, L., & Kuzila, M. S. (1997). The potential for remote sensing of loess soils suspended in surface waters. JAWRA Journal of the American Water Resources Association, 33(1), 111-117.

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International journal of remote sensing, 25(12), 2365-2401.

Malila, W. A. (1980, January). Change vector analysis: an approach for detecting forest changes with Landsat. In LARS symposia (p. 385).

Matos, L., Rodriguez de Estaba M. (2002). Cambios iniciales en la desestratificación del embalse pao cachinche por aireación artificial edo. Carabobo. Venezuela. XXVIII Congreso Interamericano de Ingeniería Sanitaria y Ambiental Cancún, México, 27 al 31 de octubre, 2002.

Miller, O., Pikaz, A., & Averbuch, A. (2005). Objects based change detection in a pair of gray-level images. Pattern Recognition, 38(11), 1976-1992.

Nackaerts, K., Vaesen, K., Muys, B., & Coppin, P. (2005). Comparative performance of a modified change vector analysis in forest change detection. International Journal of Remote Sensing, 26(5), 839-852.

Nelson, R. F. (1983). Detecting forest canopy change due to insect activity using Landsat MSS. Photogrammetric Engineering and Remote Sensing, 49(9), 1303-1314.

Nemmour, H., & Chibani, Y. (2006). Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS Journal of Photogrammetry and Remote Sensing, 61(2), 125-133.

Niemeyer, I., Marpu, P. R., & Nussbaum, S. (2008). Change detection using object features. In Object-Based Image Analysis (pp. 185-201). Springer, Berlin, Heidelberg.

Onur, I., Maktav, D., Sari, M., & Kemal Sönmez, N. (2009). Change detection of land cover and land use using remote sensing and GIS: a case study in Kemer, Turkey. International Journal of Remote Sensing, 30(7), 1749-1757.

Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing, 43(12), 1541-1552.

Richter, R. 2000a, Atmospheric and topographic correction: Model ATCOR3, DLR-IB 564-03/00, DLR

Richter, R. 2000b, Value Adding Products derived from the ATCOR Models: DLR-IB 564-01/00, DLR.

Rignot, E. J., & Van Zyl, J. J. (1993). Change detection techniques for ERS-1 SAR data. IEEE Transactions on Geoscience and Remote sensing, 31(4), 896-906

Robinson, J. W. (1979). A critical review of the change detection and urban classification literature. CSC Report to GSFC under Contract NAS, 5-24350.

Rouse Jr, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. Proceedings, Third Earth Resources Technology Satellite-1 Symposium, Greenbelt NASA SP-351, 3010-3017.

Sano, E. E., Ferreira, L. G., Asner, G. P., & Steinke, E. T. (2007). Spatial and temporal probabilities of obtaining cloud‐free Landsat images over the Brazilian tropical savanna. International Journal of Remote Sensing, 28(12), 2739-2752.

Scepan, J. (1999). Thematic validation of high-resolution global land-cover data sets. Photogrammetric engineering and remote sensing, 65(9), 1051-1060.

Serra, P., Pons, X., & Sauri, D. (2003). Post-classification change detection with data from different sensors: some accuracy considerations. International Journal of Remote Sensing, 24(16), 3311-3340.

Sinha, P., & Kumar, L. (2013). Independent two-step thresholding of binary images in inter-annual land cover change/no-change identification. ISPRS journal of photogrammetry and remote sensing, 81, 31-43.

Singh, A. (1986). Change detection in the tropical forest environment of northeastern India using Landsat. Remote sensing and tropical land management, 237-254.

Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International journal of remote sensing, 10(6), 989-1003.

Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?. Remote sensing of Environment, 75(2), 230-244.

Stauffer, M. L., & McKinney, R. L. (1978). LANDSAT image differencing as an automated land cover change detection technique[Interim Report].

Stanners, D., and Bourdeau, P. (editors), 1995, Europe’s Environment: the Dobris assessment (Luxembourg: O ce for O cial Publications of the European Communities), ISBN 92-826-5409-5.

Stefanov, W. L., Ramsey, M. S., & Christensen, P. R. (2001). Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote sensing of Environment, 77(2), 173-185.

Sohl, T. L. (1999). Change analysis in the United Arab Emirates: an investigation of techniques. Photogrammetric Engineering and Remote Sensing, 65(4), 475-484.

Thenkabail, P. S., Schull, M., & Turral, H. (2005). Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3), 317-341.

Teillet, P. M., & Fedosejevs, G. (1995). On the dark target approach to atmospheric correction of remotely sensed data. Canadian Journal of Remote Sensing, 21(4), 374-387.

Tomowski, D., Ehlers, M., & Klonus, S. (2011, April). Colour and texture based change detection for urban disaster analysis. In Urban Remote Sensing Event (JURSE), 2011 Joint (pp. 329-332). IEEE.

Trodd, N. M. (1995). Uncertainty in land cover mapping for modelling land cover change. Proceedings RSS95: Remote Sensing in Action, 1138-1145.

Vapnik, V., & Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural computation, 12(9), 2013-2036.

Vogelmann, J. E. (1988). Detection of forest change in the Green Mountains of Vermont using multispectral scanner data. International Journal of Remote Sensing, 9(7), 1187-1200.

Weismiller, R. A., Kristof, S. J., Scholz, D. K., Anuta, P. E., & Momin, S. A. (1977). Change detection in coastal zone environments. Photogrammetric Engineering and Remote Sensing, 43, 1533-1539.

Zhao, G. X., Lin, G., & Warner, T. (2004). Using Thematic Mapper data for change detection and sustainable use of cultivated land: a case study in the Yellow River delta, China. International Journal of Remote Sensing, 25(13), 2509-2522.

Zhou, W., Troy, A., & Grove, M. (2008). Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data. Sensors, 8(3), 1613-1636.


Refbacks

  • There are currently no refbacks.