Open Access Open Access  Restricted Access Subscription Access

Bayesian Estimation of Shape Parameter of Erlang Distribution under Precautionary Loss Function

Mr. Arun Kumar Rao, Mr. Himanshu Pandey, Ms. Kusum Lata Singh


Erlang distribution is considered. Bayesian method of estimation is employed in order to estimate the shape parameter of Erlang distribution by using Consul and Geeta priors. In this paper, the Bayes estimators of the shape parameter have been obtained under precautionary loss function.

Full Text:



M. Evans, N. Hastings and B. Peacock (2000), “Statistical distributions”, 3rd Edn., John Wiley and Sons. Inc.

Harishchandra K., Rao S. S. (1988), “A note on statistical inference about the traffic intensity parameter in M|Ek|1 queue”, Sankhya: The Ind. J. of Stat., Volume 50, Issue 1, pp. 144–148.

Abdul Haq, Sanku Dey (2011), “Bayesian estimation of Erlang distribution under different prior distributions”, Mathemat. Sci. Res. J., Volume 4, Issue 1, pp. 1–30.

A. H. Khan, T. R. Jain, (2018), “Bayesian estimation of shape and scale parameters of Erlang distribution”, International Conference on Recent Developments in Science, Humanities and Management, Pune, India.

A. Mishra (2012), “A note on consul and Geeta distribution”, J. of the Ind. Soc. of Ag. Stat., Volume 66, Issue 2, pp. 1–3.

Zellner A. (1986), “Bayesian estimation and prediction using asymmetric loss functions”, J. of the Amer. Stat. Assoc., Volume 81, Issue 394, pp. 446–451.

Basu A. P., Ebrahimi N. (1991), “Bayesian approach to life testing and reliability estimation using asymmetric loss function”, J. of Stat. Plann. and Infer., Volume 29, Issue 1–2, pp. 21–31, DOI: 10.1016/0378-3758(92)90118-C.

J. G. Norstrom (1996), “The use of precautionary loss functions in risk analysis”, IEEE Trans. on Reliab., Volume 45, Issue 3, pp. 400–403, DOI: 10.1109/24.536992.


  • There are currently no refbacks.