High Performance Pre-computation based Self-Controlled Precharge-Free Content-Addressable Memory
Abstract
Content-addressable memory (CAM) is a special type of memory used in networking applications for very-high-speed searching operation. It compares input search data with the table of stored data, and returns the address of matching data in a parallel search method. Also the use of parallel comparison results in reduced search time, it also significantly increases power consumption when compared to precharge based CAM. The low-power NAND-type and high-speed NOR-type CAM methods require the precharge prior to the search. This PF phase leads to increase the settling time of the output and also reduce the speed of the search operation. In this paper, a High performance Pre-computation Based Self-Controlled Precharge-Free CAM (PB-SCPF CAM) structure is proposed for high-speed applications which reduce the settling time as well as improve the speed of the search. Where search time is very important for designing larger word lengths, SCPF architecture is efficacious in applications. The experimental results show that PB-SCPF approach can attain on average 32% in power reduction and 80% in delay reduction. The most important contribution of this project is that it offers theoretical and practical proofs to verify that our suggested PB-SCPF CAM system can achieve greater power reduction without the requirement of special CAM cell design. This shows that the approach which we have used is more flexible and adaptive for general designs and high speed applications.
Full Text:
PDFRefbacks
- There are currently no refbacks.