Research Scenario of Bio Informatics in Big Data Approach

S. Jafar Ali Ibrahim, Dr. M. Thangamani, D. Sarathkumar

Abstract


Big Data can unify all patient related data to get a 360-degree view of the patient to analyze and predict outcomes. This investigation examines the concepts and characteristics of Big Data, concepts about Translational Bio Informatics and some public available big data repositories and major issues of big data. This issue covers the area of medical and healthcare applications and its opportunities.

 


Full Text:

PDF

References


Eaton, C., D. Deroos, T. Deutsch, G. Lapis and P. Zikopoulos, 2012. Understanding big data. McGraw-Hill Companies.

O’Reilly Radar Team, 2012. Planning for big data. O’Reilly.

Zikopoulos, P., C. Eaton, D. de Roos, 2012. Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill, New York.

Bottles, K. and E. Begoli, 2014. Understanding the pros and cons of big data analytics. Physician Exec., 40: 6-12

Zaslavsky, A., C. Perera and D. Georgakopoulos, 2012. Sensing as a service and big data. Proceedings of the International Conference on Advances in Cloud Computing (ACC’ 12), Bangalore, India, pp: 1-8.

Chen, H.C., R.H.L. Chiang and V.C. Storey, 2012. Business intelligence and analytics: From big data to big impact. MIS Q., 36: 1165-1188.

Priyanka, K. and N. Kulennavar, 2014. A survey on big data analytics in health care. Int. J. Comput. Sci. Inform. Technologies, 5: 5865-5868.

Segen's Medical Dictionary. S.v. "clinical data." Retrieved April 13 2018 from https://medicaldictionary.thefreedictionary.com/clinical+data

Yang, S., M. Njoku and C.F. Mackenzie, 2014. ‘Big data’ approaches to trauma outcome prediction and autonomous resuscitation. Brit. J. Hospital Med., 75: 637-641. DOI: 10.12968/hmed.2014.75.11.637.

Terry, N.P., 2013. Protecting patient privacy in the age of big data. UMKC Law Rev., 81: 385-415.

Shrestha, R.B., 2014. Big data and cloud computing. Applied Radiology.

Miller, K., 2012. Big data analytics in biomedical research. Biomedical Computation Review.

Herland et al.: A review of data mining using big data in health informatics. Journal of Big Data2014 1:2. doi:10.1186/2196-1115-1-2

Chen J, Qian F, Yan W, Shen B (2013) Translational biomedical informatics in the cloud: present and future. BioMed Res Int2013:8.[http://dx.doi.org/10.1155/2013/658925]

McDonald E, Brown CT (2013) khmer: Working with big data in Bioinformatics. CoRR abs/1303.2223: 1–18

Beltrame, F. and Koslow, S. H. (1999). Neuroinformatics as a mega science issue. IEEE Transactions on Information Technology in Biomedicine, 3(3):239-240. PMID: 10719488.

Luscombe, N. M., Greenbaum, D., and Gerstein, M.(2001). What is bioinformatics? a proposed definition and overview of the field. Method. Inform. Med., 40(4):346-258. PMID: 11552348.

Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Béné MC, De Vos J, Hernández JM, Hofmann WK, Mills KI, Gilkes A, Chiaretti S, Shurtleff SA, Kipps TJ, Rassenti LZ, Yeoh AE, Papenhausen PR, Wm Liu, Williams PM, For (2010) Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. J Clin Oncol 28(15): 2529–2537.[http://jco.ascopubs.org/content/28/15/2529.abstract]

Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen C, Lopez-Doriga A, Santos C, Marijnen C, Westerga J, Bruin S, Kerr D, Kuppen P, van de Velde C, Morreau H, Van Velthuysen L, Glas AM, Van’t Veer LJ, Tollenaar R (2011)Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol29: 17–24. [http://jco.ascopubs.org/content/29/1/17.abstract]

Annese J (2012) The importance of combining MRI and large-scale digital histology in neuroimaging studies of brain connectivity and disease. Front Neuroinform6:13.[http://europepmc.org/abstract/MED/22536182]

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K (2013) The WU-Minn human connectome project: an overview. NeuroImage 80(0): 62–79. [http://www.sciencedirect.com/science/article/pii/ S1053811913005351]. [Mapping the Connectome]

Yoshida H, Kawaguchi A, Tsuruya K (2013) Radial basis function-sparse partial least squares for application to brain imaging data. Comput Math Methods Med 2013: 7. [http://dx.doi.org/10.1155/2013/591032]

Campbell AJ, Cook JA, Adey G, Cuthbertson BH (2008) Predicting death and readmission after intensive care discharge. British J Anaesth 100(5): 656–662. [http://europepmc.org/abstract/MED/18385264]

Fialho AS, Cismondi F, Vieira SM, Reti SR, Sousa JMC, Finkelstein SN (2012) Data mining using clinical physiology at discharge to predict ICU readmissions. Expert Syst Appl 39(18): 13158–13165. [http://www.sciencedirect.com/science/article/pii/S0957417412008020]

Ouanes I, Schwebel C, Franais A, Bruel C, Philippart F, Vesin A, Soufir L, Adrie C, Garrouste-Orgeas M, Timsit JF, Misset B (2012) A model to predict short-term death or readmission after intensive care unit discharge. J Crit Care 27(4): 422.e1–422.e9. [http://www.sciencedirect.com/science/article/pii/S0883944111003790]

Mathias JS, Agrawal A, Feinglass J, Cooper AJ, Baker DW, Choudhary A (2013) Development of a 5 year life expectancy index in older adults using predictive mining of electronic health record data. J Am Med Inform Assoc 20(e1): e118–e124. [http://jamia.bmj.com/content/20/e1/e118.abstract]

Ballard C, Foster K, Frenkiel A, Gedik B, Koranda MP, Nathan S, Rajan D, Rea R, Spicer M, Williams B, Zoubov VN (2011) IBM Infosphere Streams: Assembling Continuous Insight in the Information Revolution. [http://www.redbooks.ibm.com/abstracts/sg.pages=247970html]

Zhang Y, Fong S, Fiaidhi J, Mohammed S (2012) Real-time clinical decision support system with data stream mining.J Biomed Biotechnol 2012: 8. [http://dx.doi.org/10.1155/2012/580186]

Thommandram A, Pugh JE, Eklund JM, McGregor C, James AG (2013) Classifying neonatal spells using real-time temporal analysis of physiological data streams: Algorithm development In: IEEE Point-of-Care Healthcare Technologies (PHT 2013). IEEE, based in New York, USA, Bangalore, India, pp 240–243

Ashish N, Biswas A, Das S, Nag S, Pratap R (2012) The Abzooba smart health informatics platform (SHIP)™– frompatient experiences to big data to insights. CoRR abs/1203.3764: 1–3

Rolia J, Yao W, Basu S, Lee WN, Singhal S, Kumar A, Sabella S (2013) Tell me what i don’t know - making the most of social health forums. Tech. Rep: HPL-2013–43. Hewlett Packard Labs [https://www.hpl.hp.com/techreports/2013/ HPL-2013-43.pdf]

Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS (2013) Monitoring influenza epidemics in China with search query from Baidu. PLoS ONE 8(5): e64323. [doi: 10.1371/journal.pone.0064323]

Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) Detecting influenza epidemics using search engine query data. Nature 457(7232): 1012–1014. [http://dx.doi.org/10.1038/nature07634]

Achrekar H, Gandhe A, Lazarus R, Yu SH, Liu B (2012) Twitter improves seasonal influenza prediction In: International Conference on Health Informatics (HEALTHINF’12). Nature Publishing Group, based in London, UK, Vilamoura, Portugal, pp 61–70

Signorini A, Segre AM, Polgreen PM (2011) The use of twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE 6(5): e19467. doi:10.1371/journal.pone.0019467

Bennett C, Doub T (2011) Data mining and electronic health records: selecting optimal clinical treatments in practice. CoRR abs/1112: 1668

Yasnoff WA, O’Carroll PW, Koo D, Linkins RW, Kilbourne EM. Public health informatics: improving and transforming public health in the information age. J Public Health Manag Pract 2000; 6:67–75.

Kumar, Pavan & Ch, Janaki & Neeharika, N & Saluja, Payal & Mangala, Natampalli & B.B, Prahlada Rao. (2015). Information gateway for integrated pharmacogenomics data- IGIPD. Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014. 1-9. 10.1109/BigData.2014.7004385.

Wang Y, Xing J, Xu Y, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys 2015; 48:488–515.

M. Whirl-Carrillo, E.M. McDonagh, J. M. Hebert, L. Gong, K. Sangkuhl, C.F. Thorn, R.B. Altman and T.E. Klein. "Pharmacogenomics Knowledge for Personalized Medicine"Clinical Pharmacology & Therapeutics (2012) 92(4): 414-417.

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. Drug Bank 5.0: a major update to the Drug Bank database for 2018. Nucleic Acids Res. 2017 Nov 8. doi: 10.1093/nar/gkx1037.

Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ. The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res. 2016 Sep 19;[Epub ahead of print] PMID:27651457

The Reactome Pathway Knowledgebase. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D'Eustachio P. Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655.doi:10.1093/nar/gkx1132.PMID:29145629

Daniel R. Zerbino. Et al, Ensembl 2018. PubMed PMID: 29155950.

doi:10.1093/nar/gkx1098.

Ayesha Pasha, Vinod Scaria, "Pharmacogenomics in the Era of Personal Genomics: A Quick Guide to Online Resources and Tools", Omics for Personalized Medicine, pp. 187-211, 2013

Kanehisa, Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K.; KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-D361 (2017).

Kuhn, Michael et al. “STITCH: Interaction Networks of Chemicals and Proteins.” Nucleic Acids Research 36.Database issue (2008): D684–D688. PMC. Web. 26 Apr. 2018.

Gamazon, Eric R. et al. “PACdb: A Database for Cell-Based Pharmacogenomics.” Pharmacogenetics and genomics 20.4 (2010): 269–273. PMC. Web. 26 Apr. 2018.

Mailman MD et al, 'The NCBI dbGaP database of genotypes and phenotypes", Nat Genet, vol. 39, no. 10, pp. 1181–1186, 2007.

PGP-UK: a research and citizen science hybrid project in support of personalized medicine.

Stephan Beck et al bioRxiv 288829; doi: https://doi.org/10.1101/288829

The Indian Genome Variation Consortium Hum Genet (2005) 118: 1. https://doi.org/10.1007/s00439-005-0009-9

Ibrahim, S. Jafar Ali, and M. Thangamani. "Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk." Journal of medical systems 42, no. 10 (2018): 188.

telemedicine and applications 2018


Refbacks

  • There are currently no refbacks.