

1 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

 Test Case Prioritization Using Aggregate Weight of the Independent Path

Harish Kumar, Naresh Chauhan

 Department of Computer Engineering, YMCA University of Science & Technology, India

htanwar@gmail.com, Nareshchauhan19@gmail.com

Abstract

Software testing is considered an important phase for developing and maintaining any

software. It controls the quality and reliability of the software being tested. The main

objective of testing is to identify and eliminated bugs. Although it is a time consuming activity,

the time spent is justified because it is used for generation of test cases and their testing. So,

in order to avoid exhaustive testing, test cases are prioritized. In the past, many techniques of

prioritization have been used to prioritize the test cases of white box testing, which fully

covers the whole structural and functional part of software, as it covers the independent paths

of all modules. But none of the techniques focused on the complexity of the statements covered

by an independent path. So in this paper, the prioritization of test cases using basis path

testing is presented, in which the most important independent path has been considered for

testing. The importance of the independent path is calculated on the basis of the Complexity

of the statements covered by that independent path.

Keywords: Software, complexity, program, white box testing, language code

INTRODUCTION

Software testing is a process which is

basically carried out with the intent of

finding errors [1]. It is done in a systematic

manner in order to achieve the fullest

potential of the software. Testing must be

done by keeping in mind all the essential

factors such as quality, reliability, integrity

and efficiency. Designing of suitable and

efficient test cases is a challenging task.

The testing process has to be planned,

scheduled, designed and prioritized. The

need of prioritization is to meet the cost

constraints, to minimize the test suites, and

early detection of faults in order to

maximize the objective function.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

mailto:htanwar@gmail.com,
mailto:Nareshchauhan19@gmail.com
http://www.novapdf.com/
http://www.novapdf.com/

2 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

There are two main techniques of testing:

white box testing and black box testing [2–

4]. White box testing or structural testing is

typically focused on the internal structure

of the program [2–4]. In white box testing,

structure means the logic of the program

which has been implemented in the

language code. The base of the path

coverage is determined by basis path

testing. This type of testing is the oldest

structural testing technique, which is based

on the control structure of the program.

This control structure further uses the

control flow graph to cover each possible

path during testing so that each test case is

executed efficiently.

Basis path testing is an important part of

white box testing. It monitors the whole

control structure of the program. Based on

the control structure, a flow graph is

prepared and all the possible paths are

covered and executed during testing. It is

considered the general criteria for detecting

more errors as all statements and all

branches are covered while testing. But the

problem with this testing is that while all

statements and all branches are covered,

the critical points of the paths like loops,

arrays, in-degree, out-degree etc. are not

factored in. Therefore following important

questions do not get answered:

1. Which path is complex and error prone?

2. What kind of statements a path has, eg.

loops, arrays or pointer usage?

3. What should be the order of the test

cases dedicated for differnet paths so

that faults are detected as soon as

possible?

So in this proposed technique,

characteristics of each critical point has

been considered and a formula has been

proposed to detect which path is more

critical, so that while testing the main focus

is given to that path and hence, it will lead

to saving of time, cost and effort.

Section 2 of the paper discusses the related

work, Section 3 discusses the proposed

approach for test case prioritization,

Section 4 discussed analysis of the

proposed work, and section 5 discusses the

effectiveness of proposed approach.

Section 6 concludes this paper in brief.

BASIS PATH TESTING

It is one of the oldest structural testing

techniques that are based on the control

structure of the program [3]. On the basis

of that control structure, a flow graph is

developed and it is assumed that all

possible paths can be covered at least once

during testing. Here, modified version of

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

3 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

path coverage criterion is used which is the

most general criterion when compared to

other logic coverage criteria. The problem

with path coverage is that a program that

contains loops can have an infinite number

of possible paths and it's impractical to test

all those paths. Basis path testing is the

testing technique of selecting the paths to

provide a basis set of execution paths

through the program.

An execution path is a set of nodes and

directed edges in a flow graph that

connects (in a directed fashion) the start

node to a terminal node. Two execution

paths are said to be independent if they do

not include the same set of nodes and

edges.

CYCLOMATIC COMPLEXITY

Cyclomatic complexity is the software

metric that provides a quantitative measure

of the logical complexity of a program [1,

2]. When used in the context of a basis path

testing method, the value computed for

cyclomatic complexity defines the number

of independent paths in a basis set of a

program, and provides an upper limit for

the number of tests that must be conducted

to ensure that all the statements have been

executed at least once.

An independent path is any path through

the program that introduces at least one

new set of processing statements or a new

condition. When stated in terms of a flow

graph, an independent path must move

along at least one edge that has not been

traversed before the path is defined.

There can be different basis sets for a

procedural design, so a measure called

cyclomatic complexity is used to define the

paths which need to be considered. The

value of this provides us the upper limit for

the number of independent paths that

comprise the basis set.

RELATED WORK

Srivastava et al. proposed an approach for

identification of effective paths in control

flow graph for software under test and

prioritized the most feasible path to be

executed first using ant colony

optimization algorithm [5].

Kumar et al. discussed the basis path

testing as an imperative testing method in

white box testing [6–8]. Basis path testing

focused on internal logic; therefore it

generates a feasible set of independent

paths present in source code, which is

known as basis path. Out of these paths,

some may be not feasible.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

4 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Zhonglin et al. proposed an improved

approach for basis path testing [6]. The

proposed technique combines the baseline

method with dependence relation analysis.

The method proposed by them generated a

set of linearly independent paths, termed

as basis paths.

Qingfeng et al. elaborated the work

proposed by Zhonglin for selection of

infeasible paths [7]. In his research paper,

he proposed a new approach for selection

of independent paths. To show the

effectiveness of his proposed approach, he

illustrated his work on a triangle program.

Himanshi et al. proposed a technique to

prioritize the paths using ant colony

optimization [9]. The proposed approach

allows tester to find out the probability for

each path and priority of the shortest path

comes out to be maximum.

Ahmed S. Ghiduk proposed an ant colony

optimization based approach for

generating a set of optimal paths to cover

all definition-use associations in the

program under test [10]. This approach

uses the ant colony optimization to

generate a suite of test-data for satisfying

the generated set of paths. He also

introduced a case study to illustrate his

approach.

PROPOSED WORK

In this research work, the independent

paths of the flow graph have been

considered for test case prioritization. First

of all, the independent paths are calculated

from the flow graph. Now each node of the

flow graph is characterized based on its

criticality. After this the importance weight

of each node of the graph is calculated.

Finally the aggregate weight of the

independent path is calculated. Then the

paths and their corresponding test cases are

prioritized based on the higher value of the

aggregate weight. The basic flow of the

proposed procedure is shown in Figure 1.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

5 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Fig. 1: Flow of Proposed Procedure.

For finding out the weight of the

independent path, six factors are proposed.

They are:

1. Loop count

2. Array count

3. Predicate nodes

4. Pointers

5. In-degree of the node, which is the

number of head endpoints adjacent to a

node. The number of heads pointing

inwards to a particular node is called the

in-degree of the node.

6. Out-degree of the node, which is the

number of tail endpoints adjacent to a

node. It is called a branching factor in a

tree. The number of nodes pointing

outwards through a particular node is

called the out-degree of that node.

 These proposed factors are assigned an

importance weight as shown in Table 1.

Table 1: Importance Weight Factor Values.

S. No. Factors Importance Weight

1 Loop 10

2 Predicate Node 5

3 Pointers 2

4 Arrays 1

5 In-Degree 2

6 Out-Degree 2

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

6 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

PROPOSED ALGORITHM

Find all independent paths (IP) from a flow

graph.

{

Loop_count=0, predicate node_count=0,

pointer_count=0, array_count=0;

indegree_count=0,

outdegree_count=0;

While (IP)

{

/*Find aggregate_importance_weight of

the all the independent paths of the flow

graph. */

For each (N) { /*N=node*/

If N contains loop then loop_ count =

loop_count++

If N contains predicate node then assign

predicate_nodes_count =

predicate_nodes_count++

If N contains pointer then assign

pointer_count = pointer_count++

If N contains array then assign array_count

= array_count++

Count in-degree of particular node and

assign it to in-degree_count.

Count out-degree of particular node and

assign it to out-degree_count.

}

Aggregate_path_weight = loop_count *

loop_weight + predicate node_count *

predicate node weight

+ pointer_count * pointer weight +

array_count * array weight +

indegree_count * weight +

outdegree_count * outdegree weight.

}

Now Prioritization of paths is decided on

the basis of the aggregate_path_weight.

Higher the value of the

aggregate_path_weight, higher the priority

assigned to a path. The test case

corresponding to this path should be given

a higher priority. So if prioritization is

based on the proposed technique, the errors

will be detected early.

ANALYSIS OF PROPOSED

APPROACH

To analyze and validate the method

proposed above, a sample program has

been taken [2]. The control flow graph of

the sample program is shown in Figure 2.

The independent paths are calculated. The

test cases are designed for these

independent paths which are shown in

Table 2. Then the importance weight of all

independent paths has been calculated.

Then the prioritization order has been

provided to each path on the basis of

highest aggregate weight of the paths.

Further, to validate the prioritized test

suite, the APFD (Average percentage of

fault detection) metric has been taken. The

validation has been demonstrated by

comparing the non-prioritized test suite and

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

7 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

the prioritized test suite with the help of APFD metric.

Table 2: Test Cases for the Sample Program.

TEST

ID
INPUTS

PATH

COVERED
EXPECTED OUTPUT

 FLAG1 FLAG2 SAV_CH
SAVING

TYPE
AMOUNT

SAVING

TYPE.
AMOUNT TOTAL

OUTPUT

MESSAGE

1 0 0 N NIL NIL P1 NOTHING 0 0

2 0 0 Y,N
NO

READ
NIL P2 GARBAGE 0 0

3 1 0 Y XYZ NIL P3 NOTHING 0 0

4 1 0 Y X$YZ NIL P4 0 0

SAVING TYPE

CONTAIN

ONLY

CHARACTER

5 1 0 Y XYZ NIL P5 XYZ 0 0

6 0 1 Y XY NIL P6 XY

PLEASE

ENTER

BETWEEN 3

TO 20

CHARACTERS

7 0 1 Y NIL -10 P7 NOTHING

AMOUNT

CANNOT BE

EQUAL OR

LESS THAN 3

8 0 1 y NIL 1200 P8 NOTHING 12000

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

8 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Fig. 2: Control Flow Graph of the Sample Program.

After analysing the sample program, the values obtained for six proposed factors for various

nodes is shown in Table 3.

 Table 3: Proposed Factors Count for the Sample Program.

Id Node No. Loop Array Predicate Node Pointer In-degree Out-degree

1 1-4 0 0 0 0 0 1

2 5 1 0 0 0 2 2

3 6 0 0 0 0 1 1

4 7 1 0 0 0 2 2

5 8-10 0 1 0 0 1 1

6 11 1 1 0 0 2 2

7 12 0 0 0 0 1 1

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

9 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

8 13 0 1 1 0 1 2

9 14-16 0 0 0 0 1 1

10 17-21 0 0 0 0 1 1

11 23 0 0 0 0 0 2

12 24 0 1 1 0 2 2

13 25-28 0 0 0 0 1 1

14 29 0 0 0 0 2 1

15 30 1 0 0 0 2 2

16 31-33 0 0 0 0 1 1

17 34 0 0 1 0 1 2

18 35-37 0 0 0 0 1 1

19 38-42 0 0 0 0 1 1

20 43 0 0 0 0 2 1

21 44-54 0 1 0 0 1 1

22 55 0 0 0 0 1 1

23 56-57 0 0 0 0 1 0

Independent Paths are

1. (1-4)-5-23

2. 1-5-6-7-30-(44-54)-55-5-(56-57)

3. (1-4)-5-6-7-(8-10)-11-24-29-7-30-(44-54)-55-5-(56-57)

4. (1-4)-5-6-7-(8-10)-11-12-13-(17-21)-24-29-7-30-(44-54)-55-5-(56-57)

5. (1-4)-5-6-7-(8-10)-11-12-13-(14-16)-23-11-24-29-7-30-(44-54)-55-5-(56-57)

6. (1-4)-5-6-7-(8-10)-11-24-(25-28)-29-7-30-(44-54)-55-5-(56-57)

7. (1-4)-5-6-7-30-(31-33)-34-(38-42)-43-30-(44- 54)-55-5-(56-57)

 8. (1-4)-5-6-7-30-(31-33)-34-(35-37)-43-30-(44- 54)-55-5-(56-57)

 Importance Weight of Each Node

Node (1-4) weight = (1*2) = 2

Node 5 weight = (1*10) + (2*2) + (2*2) = 18

Node 6 weight = (1*2) + (1*2) =4

Node 7 weight = (1*10) + (2*2) + (2*2) = 18

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

10 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Node (8-10) weight = (1*1) + (1*2) + (1*2) = 5

Node 11 weight = (1*10) + (1*1) + (2*2) + (2*2) = 19

Node 12 weight = (1*2) + (1*2) = 4

Node 13 weight= (1*1) + (1*5) + (1*2) + (2*2) = 12

Node (14-16) weight = (1*2) + (1*2) = 4

Node (17-21) weight = (1*2) + (1*2) = 4

Node 23 weight= (2*2) = 4

Node 24 weight= (1*1) + (1*5) + (2*2) + (2*2) = 14

Node (25-28) weight = (1*2) + (1*2) = 4

Node 29 weight= (2*2) + (1*2) = 6

Node 30 weight= (1*10) + (2*2) + (2*2) = 18

Node (31-33) weight= (1*2) + (1*2) = 4

Node 34 weight= (1*5) + (1*2) + (2*2) = 11

Node (35-37) weight= (1*2) + (1*2) = 4

Node (38-42) weight= (1*2) + (1*2) = 4

Node 43 weight = (2*2) + (1*2) = 6

Node (44-54) weight = (1*1) + (1*2) + (1*2) =5

Node 55 weight = (1*2) + (1*2) = 4

Node (56-57) weight = (1*2) = 2

Aggregate Weight of all Paths is

 Path1-((1-4)-5-23) = 24

Path 2-((1-4)-5-6-7-30-(44-54)-55-5-(56-57)) = 89

Path 3-((1-4)-5-6-7-(8-10)-11-24-29-7-30-(44-54)-55-5-(56-57)) = 151

Path 4-((1-4)-5-6-7-(8-10)-11-12-13-(17-21)-24-29-7-30-(44-54)-55-5-(56-57)) = 171

Path 5-((1-4)-5-6-7-(8-10)-11-12-13-(14-16)-23-11-24-29-7-30-(44-54)-55-5-(56-57)) =

194

Path 6-((1-4)-5-6-7-(8-10)-11-24-(25-28)-29-7-30-(44-54)-55-5-(56-57)) = 155

Path 7-((1-4)-5-6-7-30-(31-33)-34-(38-42)-43-30-(44-54)-55-5-(56-57)) = 132

Path 8-((1-4)-5-6-7-30-(31-33)-34-(35-37)-43-30-(44-54)-55-5-(56-57)) = 132

So the path 5 has the highest aggregate

weight, hence this path is highly critical.

The chances of finding errors are more

in this path as compared to other paths.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

11 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

So the test case corresponding to this

path should be given highest priority.

So, finally the prioritized order of the

test cases corresponding to their

independent paths is: {TC5, TC4, TC6,

TC3, TC7, TC8, TC2, TC1}.

EFFECTIVENESS OF THE

PROPOSED APPROACH

To show the effectiveness of the proposed

approach, the APFD is calculated for both

a randomly chosen approach and the

proposed approach. We have 8 faults and

their corresponding test cases which are

shown in Table 4.

Table 4: Test Case and Fault Map in Non-Prioritized Order.

Fault

Id

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

F1 * *

F2 * *

F3 * * *

F4

 *

F5 * * *

F6 * * *

F7 *

F8 *

APFD Calculation of Non-Prioritized

Test Suite

Let Non-prioritized test suite be {T1,

T2, T3, T4, T5, T6, T7, T8}

No. of test cases (N) = 8

No. of faults (M) = 8

APFD for non-prioritized test suite:

APFD = 1 – (3+6+2+4+3+1+5+3)/

(8*8) +1/ (2*8)

 =0. 64

 = 64%

Table 5 shows the mapping of test cases

with the corresponding faults for their

prioritized order.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

12 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Table 5: Test Cases and Faults Mapping in Prioritized Order.

Fault

Id

TC5 TC4 TC6 TC3 TC7 TC8 TC2 TC1

F1 * *

F2 * *

F3 * * *

F4

 *

F5 * * *

F6 * * *

F7 *

F8 *

APFD Calculation for Prioritized test

suite

 The prioritized order of test suite is {T5,

T4, T6, T3, T7, T8, T2, T1 }.

No. of test cases (N) =8

No. of faults (M) = 2

APFD = 1 – [(4+3+1+2+1+3+1+4) /

(8*8)] + [1/(2*8)]

 = 0.77

 =77%

From the above calculations it is clear that

prioritized test suite gives better APFD

value as shown in Figure 3.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

13 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Fig. 3: Comparison of Non-Prioritized and Prioritized APFD Values.

CONCLUSION

In this research paper a new technique for

prioritizing test cases has been proposed.

The proposed approach prioritizes the test

cases based on the aggregate weight of the

independent path of a program. For

calculating the aggregate weight of the

independent paths, six factors have been

taken into consideration. To analyze the

above method, a sample program has been

taken. To validate the prioritized test suite,

the APFD (average percentage of fault

detection) metric has been taken. The

validation has been demonstrated by

comparing the randomized test suite and

the prioritized test suite using APFD

metric. It has been observed from the

APFD values for both randomized and

prioritized test suite that the proposed

method is effective in identifying more

bugs as compared to random order of test

cases. Thus, the proposed method proves to

be helpful in finding bugs early, thereby

reducing the time, effort and cost required

for the project.

REFERENCES

1. G.J. Myers, The Art of Software

Testing, John Wiley & Sons, 1979.

2. Dr. Naresh Chauhan ,“Software

Testing – Principle and Practice” ,

Oxford University Press, 2010.

3. T. McCabe, “A Complexity Measure”,

IEEE Trans. On Software Engg., 1976;

308–320p.

4. Pankaj Jalote, “An Integrated

Approach to Software Engineering”,

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

14 Page 1-14 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Narosa Publishing House, Second

Edition, 2003.

5. Saurabh Srivastava, Sarvesh Kumar,

Ajeet Kr. Verma, “ Optimal path

sequence in basis path testing”,

International Journal of Advanced

Computational Engineering and

Networking, ISSN(p): 2013; 1(1):

2320–2106p.

6. Zhang Zhonglin, M.L., “An Improved

Method of Acquiring Basis Path for

Software Testing”, ICCSE’10. IEEE.

1891–1894p.

7. Qingfeng, D. “An improved algorithm

for basis path testing”, 2011IEEE.

175–178p.

8. T. Bharat Kumar, N.H., “A catholic

and enhanced study on basis path

testing to avoid infeasible paths in

CFG”. Global trends in information

systems and software applications,

2012; 386–395p.

9. Himanshi, Nitin Umesh and Saurabh

Srivastva, “ Path Prioritization using

Meta-Heuristic Approach”,

International Journal of Computer

Applications(0975-8887), 2013;

77(11).

10. Ahmed S. Ghiduk, “A new software

data-flow testing approach via ant

colony algorithms”, Universal Journal

of Computer Science and Engineering

Technology, 1(1), 2010; 64–72p.

ISSN: 2219-2158.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

