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Abstract 

In this paper, a spatio-temporal forecasting model of water balance variables in the San 

Diego aquifer, Venezuela is proposed combining tools of GIS as the geostatistical analyst 

tool to make prediction of variables using statistical spatial prediction models based on the 

Ordinary Krigging followed by the application of forecasting models including those as: 

linear trend, quadratic trend, exponential trend, moving average, simple exponential 

smoothing, Brown’s linear exponential smoothing, quadratic exponential smoothing and 

autoregressive integrated moving average (ARIMA). The spatio-temporal forecasting models 

of water balance variables in the San Diego aquifer have been calibrated and validated 

showing a successful adjustment to the water balance variables as the following five 

variables: 1) precipitation, 2) evapotranspiration, 3) pumping flow, 4) infiltration and 5) 

volume stored. In the calibration stage, the statistical spatial prediction model selected has 

been J-Bessel and the forecasting model selected has been Brown's quadratic exp. smoothing 

with constant alpha.  In the validation stage, the correlation coefficient has taken values 

upper to 0.98 and the determination coefficient upper to 0.96 confirming that the method 

used to generate the spatio-temporal forecasting model to achieve good predictions to the 

water balance variables. 

 

Keywords: Spatio-Temporal Forecasting Model, Water Balance, Statistical Spatial 

Prediction Model 

 

INTRODUCTION 

Using the technology of Geographic 

Information System (GIS), only two 

methods have been reported for 

forecasting, which are Markovian chains 

(Jianping et al., 2005; Yin et al, 2007; 

Kumar et al., 2014; Han et al., 2015; 

Padonou et al., 2017) and neural networks 

focused in multi-layer perceptron 

(Pijanowski et al., 2002; Mishra et al., 

2014). These two methods have been 

applied mainly for predicting changes in 

land use and land cover. The water balance 

model mainly used to estimate a current, 

concentrated and averaged value of the 

water balance variables has been 

developed from 1940's by Thornthwaite 

(1948) and later revised by Thornthwaite 

and Mather (1955). In this paper, it is 

proposed a hybrid method to generate a 

spatio-temporal forecasting model of water 

balance variables using as study unit the 

San Diego aquifer, Venezuela. The 

proposed method combines tools of GIS as 

the geostatistical analyst tool to make 

prediction of variables using statistical 

spatial prediction models based on the 

Ordinary Krigging followed by the 

application of forecasting models 

including those as: linear trend, quadratic 

trend, exponential trend, moving average, 

simple exponential smoothing, Brown’s 

linear exponential smoothing, quadratic 

exponential smoothing and autoregressive 

integrated moving average (ARIMA). 

 

STUDY AREA 

The study area is the San Diego aquifer, 
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located in the north region of Venezuela 

(Figure 1). The aquifer limits in 

geographic coordinates are the following: 

latitude: N 10°22’00‖, N 10°09’00‖, 

longitude: W67°52’00‖, W68°00’00‖.  

The San Diego aquifer is belonging to the 

Carabobo State. The north region is part of 

the mountain zone of the ―Cordillera de la 

Costa‖, which is in front of the Caribbean 

sea (Figure 1). 

 

 
Fig: 1. Location of the study area: a) Relative position of the San Diego aquifer regarding to 

the Carabobo State in Venezuela, showing the spatial distribution of the 925 pumping wells 

founded into the Carabobo State; whose monitoring variables are used to predict the 

hydrogeological parameters from the San Diego aquifer 

 

METHOD 

The applied method incudes the three steps 

following (Figure 2): 1) collection of 

information, 2) processing of information 

and 3) generation of results. In the first 

step, the database used in this study has 

been provided by four information 

sources, which are 1) Ministry of the 

Environment, 2) National Institute of 

Meteorology and Hydrology belonging to 

Ministry of the Environment, 3) the 

Hydrological Company ―Hidrologica Del 

Centro C.A.‖, 4) Center of Hydrological 

and environmental Research. The 

information has been gotten as it is 

described in the following  two aspects : 1) 

Meteorological information corresponding 

to the period between 2015 and 2017, 

which are measured by the telemetric 

network of 31 climate monitoring stations 

close to San Diego aquifer managed by the 

National Institute of Meteorology and 

Hydrology belonging to Ministry of the 

Environment. The information is available 

at no cost in the following web page: 

http://estaciones.inameh.gob.ve/estaciones/

estaciones_home.php.2) The database Of 

the pumping flow is provided by three 

sources: a) the Hydrological Company 

―Hidrologica del Centro C.A.‖, consisting 

of 200 pumping wells in the Carabobo 

State, b) Ministry of the Environment, 

consisting of 1201 pumping wells in the 

Carabobo State and c) Center of 

Hydrological and Environmental Research 

of University of Carabobo based on 24 

pumping wells into the San Diego aquifer. 

The second step implies: 1) calibration of 

geostatistical models, 2) validation of 

geostatistical models, 3) calibration of 

forecast models, and 4) validation of 

forecast models. The third step is the 

generation of spatio-temporal prediction 

maps of water balance variables.  

http://estaciones.inameh.gob.ve/estaciones/estaciones_home.php
http://estaciones.inameh.gob.ve/estaciones/estaciones_home.php
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1) Collection of 
information:

-Meteorological 
-Pumping Flow

2) Processing  of  
information:

-Calibration of 
Geostatistical Models 

-Validation  of 
Geostatistical Models

-Calibration of 
Forecasting Models

-Validation  of 
Forecasting Models

3) Generation of 
Results

-Maps of Water 
Balance Variables:

-Precipitation
-Evapotranspiration

-Pumping Flow 
-Infiltration

-Volume Stored 

 
 

Fig: 2. Workflow for spatio-temporal geostatistical modeling of hydrogeochemical 

parameters in the San Diego aquifer, Carabobo State, Venezuela. 

 

MODELING OF STATISTICAL 

SPATIAL PREDICTION 

It will be applied models of statistical 

spatial prediction (SSPM) for estimating of 

the hydrogeochemical parameters. A 

spatial prediction model estimates the 

values of the target variable (z) at some 

new location s0; being a set of observations 

of a target variable z denoted as z(s1), 

z(s2),. . . , z(sn), where si = (xi, yi) is a 

location and xi and yi are the coordinates 

(primary locations) in geographical space 

and n is the number of observations. The 

geographical domain of interest (area, land 

surface, object) can be denoted as A. It 

defines inputs, outputs and the 

computational procedure to derive outputs 

based on the given inputs (Hengl, 2007): 

 ̂(  )   *  (  )⁄    (  )  ( )      + 
Where z(si )  is the input point dataset, qk 

(s0 ) is the list of deterministic predictors 

and γ(h) is the covariance model defining 

the spatial autocorrelation structure. The 

type of SSPM used is the statistical model 

called Ordinary Krigging (OK); whose 

technique was developed by Krige (1951). 

The predictions are based on the model: 

 ( )       ( )                                   (1) 

Where μ is the constant stationary function 

(global mean) and ε'(s) is the spatially 

correlated stochastic part of variation. The 

predictions are made as in 

Matheron (1963) and Gandin (1960) 

introduced to the analysis of point data is 

the derivation and plotting of the so-called 

semivariances — differences between the 

neighbouring values: 

 ( )  
 

 
  [( (  )   (     ))

 
]      (2) 

where z(si) is the value of target variable at 

some sampled location and z(si +h) is the 

value of the neighbour at distance si + h. 

The semivariances versus their distances 

produce a standard experimental 

variogram.  From the experimental 

variogram, it can be fitted using some of 

the authorized variogram models, such as 

linear, spherical, exponential, circular, 

Gaussian, Bessel, power and similar 

(Isaaks and Srivastava, 1989; Goovaerts, 

1997). 

 

FORECASTING MODEL  

One of the models used for forecasting is 

the ARIMA models, which express the 

observation at time t as a linear function of 

previous observations, a current error term, 

and a linear combination of previous error 

terms. ARIMA(p,d,q)x(P,D,Q)s model 

consists of several terms:  1. A 

nonseasonal autoregressive term of order 

p,  2. Nonseasonal differencing of order d, 

3. A nonseasonal moving average term of 
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order q,  4. A seasonal autoregressive term 

of order P, 5. Seasonal differencing of 

order D, and 6. A seasonal moving average 

term of order Q. As a reference, AR(1) is 

an autoregressive of order 1; where the 

observation at time t is expressed as a 

mean plus a multiple of the deviation from 

the mean at the previous time period plus a 

random shock (Box, 1994; Hamilton 1994)  

        ( (   )   )    ( (   )  

 )                                                       (3) 

 

Where    is a random error or shock to the 

system at time t, usually assumed to be 

random observations from a normal 

distribution with mean 0 and standard 

deviation   . For a stationary series,   

represents the process mean. 

 

RESULTS 

Forecasting of Precipitation  

The forecasting of SSPM coefficients of 

the monthly precipitation semivariances 

based on the time series between 2015 and 

2017 are shown in Table 1; where it is 

observed that the tested models are the five 

following: A) ARIMA (autoregressive 

integrated moving average), B) Linear 

Trend, C) Simple exponential smoothing 

with constant alpha, D) Brown's linear 

exp. smoothing with constant alpha, E) 

Brown's quadratic exp. smoothing with 

constant alpha. As a sample, the results 

found for the coefficient ―a‖ are as 

follows: A) ARIMA(1,0,0) with constant, 

B) Linear trend = -65584.6 + 83.4519 t, C) 

Simple exponential smoothing with alpha 

= 0.1857, D) Brown's linear exp. 

smoothing with alpha = 0.1322 and E) 

Brown's quadratic exp. smoothing with 

alpha = 0.085.  

 

The error statistics by fitting the 

forecasting models to the SSPM 

coefficients of the monthly precipitation 

semivariances based on the time series 

between 2015 and 2017 are shown in 

Table 2, which are expressed in terms of 

three statistics of errors: 1) RMSE = root 

mean squared error, 2) MAE = mean 

absolute error, and 3) ME = mean error.  

As a sample, the results found for the 

coefficient ―a‖ are as follows: for model 

A: 1) RMSE:1582.65, 2) MAE: 1083.43, 

and 3) ME: 10.2435. For model B: 1) 

RMSE: 1429.98, 2) MAE: 985.879, and 3) 

ME: -5.66E-12. For model C: 1) RMSE: 

1554.13, 2) MAE: 916.51, and 3) ME: 

320.584. For model D: 1) RMSE: 1588.26, 

2) MAE: 1066.55, and 3) ME: 334.38. For 

model E: 1) RMSE: 1583.11, 2) MAE: 

1091.45, and 3) ME: 241.615.   In general, 

the model selected for forecasting of 

coefficients of semivariances SSPM of 

monthly precipitation is the model D 

corresponding to Brown's linear exp. 

smoothing with constant alpha because of 

the error statistics are in the group of lower 

values.   

 
The forecasting of SSPM coefficients of 
the monthly precipitation semivariances 
based on the time series between 2015 and 
2017 using Brown's quadratic exp. 
smoothing with constant alpha are shown 
in Table 3, the period for forecasting of 
monthly precipitation covers from 8/17 
(August 2017 to 12/18 (December, 2018). 
For each coefficient are included the 
following three values: 1) forecast, 2) 
Lower 95.0% limit, 3) Upper 95.0% limit. 
The values of coefficients have been 
selected for forecasting of monthly 
precipitation for 12/18 as follows: for 
coefficient a: 1) forecast: 5812.25, 2) 
Lower 95.0% limit: 1692.19, 3) Upper 
95.0% limit: 9932.3.  For coefficient b: 1) 
forecast: 3497.94, 2) Lower 95.0% limit: -
3681.11, 3) Upper 95.0% limit: 10677.0.  
For coefficient c: 1) forecast: 169761, 2) 
Lower 95.0% limit: -188724, 3) Upper 
95.0% limit: 528246. For coefficient d: 1) 
forecast: 0.713961, 2) Lower 95.0% limit: 
-2.01368, 3) Upper 95.0% limit: 3.4416. In 
Figure 3 is shown the map of forecasting 
of monthly precipitation, which varies 
between 255 and 279 mm/month. For this 
month, the maximum precipitation occurs 
between the north and middle region of the 
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San Diego aquifer. 
 
The calibration of SSPM of the monthly 
precipitation semivariances with 
forecasted coefficients for 2017 based on 
the time series between 2015 and 2017; 
which will be used in the validation stage 
is shown in Table 4, using the forecasted 
coefficients for the months of august 2017 
and October 2017 and obtaining the 
correlation statistics between the monthly 
precipitation spatial prediction and the 
measured values from the precipitation 
map for August 2016 and October 2016, 
respectively: for August 2017: 1) 
Precipitation semivariance SSPM is 
2605.74*Nugget+2749.48*J-
Bessel(170522, 0.803972), 2) PMRF: 
Predicted versus Measured Regression 
Function: 0.998736192687617 * x + 
0.372881835725707, 3) EMRF: -
0.00126380731238643 * x + 
0.372881835726463 and 4) SEMRF: 
Standardized Error versus Measured 
Regression Function: -
0.0000284879536300382 * x + 
0.00840874839905042. The statistics of 
prediction error are: 1) Mean Error: 
0.14737273353673505, 2) Root-Mean-
Square Error: 0.22413627021079577, 3) 
Mean Standardized Error: 
0.0033252776322928944, 4) Root-Mean-
Square Standardized Error: 
0.00505251238223869 and 6) Average 
Standard Error: 44.32340688814414. 
 
The calibration of SSPM of the monthly 
precipitation semivariances for  August 
2017 and October 2017 based on the 
observed time series between 2015 and 
2017; which will be used in the validation 
stage is shown in Table 5, obtaining the 
correlation statistics between the monthly 
precipitation spatial prediction and the 
measured values from the precipitation 
map for August 2016 and October 2016, 
respectively: for August 2017: 1) 
Precipitation semivariance SSPM  is 
4555.3*Nugget+10834*J-
Bessel(72869,0.01), 2) PMRF: 
0.445997193775157 * x + 

72.8387182689694, 3) EMRF: -
0.554002806224843 * x + 
72.8387182689694 and 4) SEMRF: -
0.00671600747345756 * x + 
0.797998950155083. The statistics of 
prediction error are: 1) Mean Error: -
20.983851180100107, 2) Root-Mean-
Square Error: 109.64527742491912, 3) 
Mean Standardized Error: -
0.18307542156759835, 4) Root-Mean-
Square Standardized Error: 
0.8977035001318255 and 6) Average 
Standard Error: 119.41009406720504. 
 
The validation of the forecasting of SSPM 
corresponding to the observed monthly 
precipitation for 2018 and the monthly 
precipitation estimated with forecasted 
coefficients of the monthly precipitation 
based on the time series between 2015 and 
2017 is carried on using Brown's linear 
exp. smoothing with constant alpha, as it is 
indicated in Table 6 and Figure 4; 
observing that the extracted values from 
the forecasted precipitation map in August 
2017 are correlated to the extracted values 
from the observed precipitation map in 
August 2017, finding the following 
statistical parameters: PMRF: Predicted 
versus Measured Regression function: 
Forecasted = 1.18948*Measured, CC: 
Correlation Coefficient: 0.995675, R-
squared: Determination Coefficient: 
0.991369, R

2
adjusted: R-squared 

(adjusted): 0.991369, SEE: Standard Error 
of Estimation: 9.98084, MAE: Mean 
absolute error: 7.51386, DWs: Durbin-
Watson statistic: 0.263242. In Figure 4a 
and Figure 4b, it is possible to observe the 
graphics of observed versus predicted in 
water balance variables to assess the 
performance of the spatio – temporal 
hybrid  model, the dots are close to the line 
of slope 1:1, indicating a successful 
adjustment between monthly precipitation 
predicted values and monthly precipitation 
observed values. 
 
Forecasting of Evapotranspiration  
The forecasting of SSPM coefficients of 
the monthly evapotranspiration 
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semivariances based on the time series 
between 2015 and 2017 are shown in 
Table 7; where it is observed that the 
tested models are the five, as a sample, the 
results found for the coefficient ―a‖ are as 
follows: A) ARIMA(1,0,0) with constant, 

B) Linear trend = 308.828 + -7.63053 t, C) 
Simple exponential smoothing with alpha 
= 0.0942, D) Brown's linear exp. 
smoothing with alpha = 0.062 and E) 
Brown's quadratic exp. smoothing with 
alpha = 0.0488. 

 

Table: 1. Forecasting of SSPM Coefficients of the monthly precipitation semivariances based 

on the time series between 2015 and 2017 
 Coefficient 

 a b c d 

(A) ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant ARIMA(1,0,0) with 

constant 

ARIMA(1,0,0) with constant 

(B) Linear trend = -65584.6 + 
83.4519 t 

Linear trend = -33193.7 + 
44.5936 t 

Linear trend = -443333. + 
748.781 t 

Linear trend = 61.4333 -
0.0759959 t 

(C) Simple exponential 

smoothing with alpha = 
0.1857 

Simple exponential smoothing 

with alpha = 0.0585 

Simple exponential 

smoothing with alpha = 
0.0112 

Simple exponential smoothing 

with alpha = 0.2334 

(D) Brown's linear exp. 

smoothing with alpha = 
0.1322 

Brown's linear exp. smoothing 

with alpha = 0.0205 

Brown's linear exp. 

smoothing with alpha = 
0.0052 

Brown's linear exp. smoothing 

with alpha = 0.1054 

(E) Brown's quadratic exp. 
smoothing with alpha = 0.085 

Brown's quadratic exp. 
smoothing with alpha = 0.0125 

Brown's quadratic exp. 
smoothing with alpha = 

0.0034 

Brown's quadratic exp. 
smoothing with alpha = 0.0149 

 

Table: 2. Error statistics by fitting the forecasting models to the SSPM coefficients of the 

monthly precipitation semivariances based on the time series between 2015 and 2017 
Model a b c d 

RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME 

(A) 1582.65 1083.43 10.2435 2988.75 1943.26 28.3926 186848 115654 -4.1367 1.38864 1.03044 -0.005462 

(B) 1429.98 985.879 -5.6E-12 3084.13 2053.7 1.65E-12 186721 114237 -8.63E-11 1.23324 0.91895 3.438E-16 
(C) 1554.13 916.51 320.584 3148.47 2172.48 -77.0617 185893 120163 -19681.3 1.30458 1.03367 -0.249325 

(D) 1588.26 1066.55 334.38 3163.1 2173.51 53.9117 185848 120215 -19787.6 1.37795 1.06146 -0.310107 

(E) 1583.11 1091.45 241.615 3173.36 2177.88 93.8822 185833 120224 -19775.1 1.40359 1.12649 -0.268706 

RMSE = root mean squared error, MAE = mean absolute error, ME = mean error 

 

Table: 3. Forecasting of SSPM coefficients of the monthly precipitation semivariances based 

on the time series between 2015 and 2017 using Brown's quadratic exp. smoothing with 

constant alpha  
Period a b c d 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 
Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit 

 8/17 2605.74 -446.643 5658.13 2749.48 -3687.04 9186.0 170522. -187850. 528894. 0.803972 -1.90229 3.51024 

 9/17 2769.23 -326.952 5865.41 2786.29 -3684.29 9256.86 170475. -187904. 528854. 0.798528 -1.90894 3.50599 
10/17 2937.63 -205.447 6080.72 2824.42 -3681.79 9330.64 170428. -187958. 528814. 0.79306 -1.91562 3.50174 

11/17 3110.97 -82.1435 6304.07 2863.89 -3679.56 9407.34 170380. -188012. 528773. 0.787567 -1.92235 3.49749 

12/17 3289.22 42.9522 6535.49 2904.69 -3677.62 9487.0 170333. -188067. 528733. 0.782051 -1.92912 3.49322 
 1/18 3472.4 169.844 6774.95 2946.81 -3675.99 9569.61 170286. -188121. 528693. 0.77651 -1.93594 3.48896 

 2/18 3660.49 298.546 7022.44 2990.27 -3674.68 9655.21 170238. -188176. 528652. 0.770945 -1.94279 3.48468 

 3/18 3853.52 429.076 7277.96 3035.05 -3673.7 9743.8 170191. -188230. 528612. 0.765355 -1.94969 3.4804 
 4/18 4051.46 561.461 7541.46 3081.16 -3673.06 9835.39 170143. -188285. 528571. 0.759742 -1.95663 3.47611 

 5/18 4254.33 695.736 7812.92 3128.61 -3672.78 9929.99 170096. -188339. 528531. 0.754104 -1.96361 3.47182 

 6/18 4462.12 831.937 8092.3 3177.38 -3672.85 10027.6 170048. -188394. 528490. 0.748442 -1.97063 3.46752 
 7/18 4674.83 970.107 8379.56 3227.48 -3673.29 10128.3 170000. -188449. 528449. 0.742755 -1.9777 3.46321 

 8/18 4892.47 1110.29 8674.65 3278.91 -3674.1 10231.9 169953. -188504. 528409. 0.737045 -1.98481 3.4589 

 9/18 5115.03 1252.54 8977.52 3331.68 -3675.29 10338.6 169905. -188559. 528368. 0.73131 -1.99196 3.45458 
 1018 5342.51 1396.91 9288.12 3385.77 -3676.85 10448.4 169857. -188614. 528328. 0.725551 -1.99916 3.45026 

 1118 5574.92 1543.44 9606.4 3441.19 -3678.79 10561.2 169809. -188669. 528287. 0.719768 -2.00639 3.44593 

12/18 5812.25 1692.19 9932.3 3497.94 -3681.11 10677.0 169761. -188724. 528246. 0.713961 -2.01368 3.4416 
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Table: 4. Calibration of SSPM of the monthly precipitation semivariances with forecasted 

coefficients for 2017 based on the time series between 2015 and 2017; which will be used in 

the validation stage. 
Image 

Date 

SSPM Ordinary Krigging Independent Variable 

August 

2017 

Precipitation semivariance SSPM 2605.74*Nugget+2749.48*J-Bessel(170522, 

0.803972) 

Precipitation Map in 

August 2016 
PMRF 0.998736192687617 * x + 0.372881835725707  

EMRF -0.001263807312386 * x + 0.372881835726463  

SEMRF -0.00002848795363 * x + 0.00840874839905042  
Samples 11709  

Mean Error 0.14737273353673505  

Root-Mean-Square Error 0.22413627021079577  
Mean Standardized Error 0.0033252776322928944  

Root-Mean-Square Standardized Error 0.00505251238223869  

Average Standard  Error  44.32340688814414  

October 

2017 

Precipitation semivariance SSPM 2937.63*Nugget+2824.42*J-Bessel(170428, 

0.79306) 

Precipitation Map in 

October  2016 

PMRF 1.00092117531462 * x + -0.0940326806877039  
EMRF 0.000921175314636 * x + -0.094032680689529  

SEMRF 0.000029414137948 * x + -0.0030035385528645  

Samples 11709  
Mean Error 0.01622753032847511  

Root-Mean-Square Error 0.04393955657243635  

Mean Standardized Error 0.0005173438693785862  
Root-Mean-Square Standardized Error 0.0013929198666632191  

Average Standard  Error  31.389318696102922  

SSPM: Statistical Spatial Prediction Model, PMRF: Predicted versus Measured Regression 

Function, EMRF: Error versus Measured Regression Function, SEMRF: Standardized Error 

versus Measured Regression Function, PE: Prediction Errors 

 

Table: 5. Calibration of SSPM of the monthly precipitation semivariances for August 2017 

and October 2017 based on the observed time series between 2015 and 2017; which will be 

used in the validation stage. 
Image Date SSPM Ordinary Krigging 

August 2017 Precipitation semivariance SSPM 4555.3*Nugget+10834*J-Bessel(72869,0.01) 

PMRF 0.445997193775157 * x + 72.8387182689694 
EMRF -0.554002806224843 * x + 72.8387182689694 

SEMRF -0.00671600747345756 * x + 0.797998950155083 

Samples 15 
Mean Error -20.983851180100107 

Root-Mean-Square Error 109.64527742491912 

Mean Standardized Error -0.18307542156759835 
Root-Mean-Square Standardized Error 0.8977035001318255 

Average Standard  Error  119.41009406720504 

October 2017 Precipitation semivariance SSPM 69.566*Nugget+4502.5*J-Bessel(343190,2.7017) 

PMRF 0.575441427566573 * x + 44.0901349376733 

EMRF -0.424558572433427 * x + 44.0901349376734 
SEMRF -0.0164616260498862 * x + 1.8141364901493 

Samples 11 

Mean Error 7.218086715869637 
Root-Mean-Square Error 38.63193432456264 

Mean Standardized Error 0.05483761885418889 

Root-Mean-Square Standardized Error 1.960909710160917 
Average Standard  Error  22.185509063836722 

SSPM: Statistical Spatial Prediction Model, PMRF: Predicted versus Measured Regression 

Function, EMRF: Error versus Measured Regression Function, SEMRF: Standardized Error 

versus Measured Regression Function, PE: Prediction Errors 
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Table: 6. Validation of the forecasting of SSPM corresponding to the observed precipitation 

for 2018 and the precipitation estimated with forecasted coefficients of the monthly 

precipitation based on the time series between 2015 and 2017 using Brown's linear exp. 

smoothing with constant alpha 
Dependent Variable SSPM Statistics Independent Variable 

Forecasted Precipitation Map in 

August 2017 

PMRF Forecasted = 1.18948*Measured Observed Precipitation Map in 

August 2017 Samples 532 

CC 0.995675 

R2 0.991369 

R2
adjusted 0.991369 

SEE 9.98084 

MAE 7.51386 

DW 0.263242 

Forecasted Precipitation Map in 
October 2017 

PMRF Forecasted = 0.923415* Measured Observed Precipitation Map in 
October 2017 Samples 133 

CC 0.999997 

R2 0.999994 

R2
adjusted 0.999994 

SEE 0.279439 

MAE 0.221791 

DW 0.357667 

PMRF: Predicted versus Measured Regression function, CC: Correlation Coefficient, R-

squared: Determination Coefficient, R
2

adjusted: R-squared (adjusted), SEE: Standard Error of 

Estimation, MAE: Mean absolute error, DWs: Durbin-Watson statistic, x: observed value 

 
 a b c d e 

Min. 255 120 0 30 -110 

Máx. 279 121 20 61 -77 

Fig: 3. Maps of forecasting of water balance variables using spatio – temporal hydrid model 

for December 2018: a) Precipitation (mm/month), b) Evapotranspiration (mm/month), c) 

Pumping flow (l/s), d) Infiltration (mm/month), e) Volume Stored (mm/month). 
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Fig: 4. Graphics of Observed versus Predicted in water balance variables to assess the 

performance of the spatio – temporal hybrid model 

 
The error statistics by fitting the 
forecasting models to the SSPM 
coefficients of the monthly 
evapotranspiration semivariances based on 
the time series between 2015 and 2017 are 
shown in Table 8, which are expressed in 
terms of three statistics of errors, as a 
sample, the results found for the 
coefficient ―a‖ are as follows: for model 
A: 1) RMSE: 238.791, 2) MAE: 184.844, 
and 3) ME: 0.387769. For model B: 1) 
RMSE: 245.74, 2) MAE: 195.605, and 3) 
ME: -4.92796E-14. For model C: 1) 
RMSE: 255.946, 2) MAE: 219.035, and 3) 

ME: -33.2113. For model D: 1) RMSE: 
260.086, 2) MAE: 226.631, and 3) ME: -
49.4012. For model E: 1) RMSE: 262.117, 
2) MAE: 229.284, and 3) ME: -52.3767.   
In general, the model selected for 
forecasting of coefficients of 
semivariances SSPM of monthly 
evapotranspiration is the model D 
corresponding to Brown's linear exp. 
smoothing with constant alpha because of 
the error statistics are in the group of lower 
values.   
 
The forecasting of SSPM coefficients of 
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the monthly evapotranspiration 
semivariances based on the time series 
between 2015 and 2017 using Brown's 
quadratic exp. smoothing with constant 
alpha are shown in Table 9, the period for 
forecasting of monthly evapotranspiration 
covers from 8/17 (August 2017 to 12/18 
(December, 2018). The values of 
coefficients have been selected for 
forecasting of precipitation for 12/18 as 
follows: for coefficient a: 1) forecast: 
179.391, 2) Lower 95.0% limit: -314.38, 
3) Upper 95.0% limit: 673.162.  For 
coefficient b: 1) forecast: 1578.28, 2) 
Lower 95.0% limit: -766.658, 3) Upper 
95.0% limit: 3923.22.  For coefficient c: 1) 
forecast: 648143, 2) Lower 95.0% limit: -
106531, 3) Upper 95.0% limit: 1.40282E6. 
For coefficient d: 1) forecast: 2.67126, 2) 
Lower 95.0% limit: -5.01121, 3) Upper 
95.0% limit: 10.3537. In Figure 3 is shown 
the map of forecasting of monthly 
evapotranspiration, which varies between 
120 and 121 mm/month. For this month, 
the maximum monthly evapotranspiration 
occurs between the north and middle 
region of the San Diego aquifer. 
 
The calibration of SSPM of the monthly 
evapotranspiration  semivariances with 
forecasted coefficients for 2017 based on 
the time series between 2015 and 2017; 
which will be used in the validation stage 
is shown in Table 10, using the forecasted 
coefficients for the months of august 2017 
and September 2017 and obtaining the 
correlation statistics between the monthly 
evapotranspiration  spatial prediction and 
the measured values from the monthly 
evapotranspiration  map for August 2016 
and September 2016, respectively: for 
August 2017: 1) monthly 
evapotranspiration  semivariance SSPM is 
176.043*Nugget+1505.47*J-
Bessel(650930, 2.43295), 2) PMRF: 
1.00003858791842 * x + -
0.00877499054303144, 3) EMRF: 
0.0000385879178285533 * x + -
0.00877499047065942 and 4) SEMRF: 
0.00000293273326722762 * x + -
0.000666505665. The statistics of 
prediction error are: 1) Mean Error: -

0.004002294030264697, 2) Root-Mean-
Square Error: 0.005188808075072052, 3) 
Mean Standardized Error: -
0.00030372741268137047, 4) Root-Mean-
Square Standardized Error: 
0.0003925714187172654 and 6) Average 
Standard Error: 13.180938969970756. 
The calibration of SSPM of the monthly 
evapotranspiration  semivariances for  
August 2017 and October 2017 based on 
the observed time series between 2015 and 
2017; which will be used in the validation 
stage is shown in Table 11, obtaining the 
correlation statistics between the monthly 
evapotranspiration  spatial prediction and 
the measured values from the monthly 
evapotranspiration  map for August 2016 
and October 2016, respectively: for 
August 2017: 1) Monthly 
evapotranspiration  SSPM  is 
280.78*Nugget+1496.8*J-
Bessel(1380800,0.01), 2) PMRF: 
0.540279168262678 * x + 
53.5961726423937, 3) EMRF: -
0.459720831737321 * x + 
53.5961726423936 and 4) SEMRF: -
0.0225043030693121 * x + 
2.59282615084186. The statistics of 
prediction error are: 1) Mean Error: 
1.3412381015847903, 2) Root-Mean-
Square Error: 22.528504964545103, 3) 
Mean Standardized Error: 
0.0348370352967245, 4) Root-Mean-
Square Standardized Error: 
0.9867032032596413 and 6) Average 
Standard Error: 22.039174662732194. 
 
The validation of the forecasting of SSPM 
corresponding to the observed monthly 
evapotranspiration  for 2018 and the 
monthly evapotranspiration  estimated 
with forecasted coefficients of the monthly 
evapotranspiration  based on the time 
series between 2015 and 2017 is carried on 
using Brown's linear exp. smoothing with 
constant alpha, as it is indicated in Table12 
and Figure 4; observing that the extracted 
values from the forecasted monthly 
evapotranspiration  map in August 2017 
are correlated to the extracted values from 
the monthly evapotranspiration map in 
August 2017, finding the following 
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statistical parameters: PMRF: Predicted 
versus Measured Regression function: 
Forecasted = 1.02574*Measured, CC: 
Correlation Coefficient: 0.999928, R-
squared: Determination Coefficient: 
0.999856, R

2
adjusted: R-squared 

(adjusted): 0.999856, SEE: Standard Error 
of Estimation: 1.22393, MAE: Mean 
absolute error: 1.0272, DWs: Durbin-
Watson statistic: 0.845245. In Figure 4c 
and Figure 4d, it is possible to observe the 
graphics of observed versus predicted in 
water balance variables to assess the 
performance of the spatio – temporal 
hybrid  model, the dots are close to the line 
of slope 1:1, indicating a successful 
adjustment between monthly precipitation 
predicted values and monthly precipitation 
observed values. 
 
Forecasting of Pumping Flow 
The forecasting of SSPM coefficients of 
the monthly pumping flow  semivariances 
based on the time series between 2015 and 
2017 are shown in Table 13; where it is 
observed that the tested models are the 
five, as a sample, the results found for the 

coefficient ―a‖ are as follows: A) 
ARIMA(1,0,0) with constant, B) Linear 
trend = -8.21905 + 0.0224575 t, C) Simple 
exponential smoothing with alpha = 
0.3166, D) Brown's linear exp. smoothing 
with alpha = 0.1589 and E) Brown's 
quadratic exp. smoothing with alpha = 
0.1088. 
 
The error statistics by fitting the 
forecasting models to the SSPM 
coefficients of the monthly pumping flow 
semivariances based on the time series 
between 2015 and 2017 are shown in 
Table 14, which are expressed in terms of 
three statistics of errors, as a sample, the 
results found for the coefficient ―a‖ are as 
follows: for model A: 1) RMSE: 0.243571, 
2) MAE: 0.18554, and 3) ME: 0.0165821. 
For model B: 1) RMSE: 0.215797, 2) 
MAE: 0.177117, and 3) ME: 3.89652E-15. 
For model C: 1) RMSE: 0.236881, 2) 
MAE: 0.187756, and 3) ME: 0.0459251. 
For model D: 1) RMSE: 0.240064, 2) 
MAE: 0.192478, and 3) ME: 0.0374056. 
For model E: 1) RMSE: 0.243439, 2) 
MAE: 0.194055, and 3) ME: 0.0181451.   

 

Table: 7. Forecasting of SSPM coefficients of the monthly evapotranspiration semivariances 

based on the time series between 2015 and 2017 
 Coefficient 
 a b c d 

(A) ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant ARIMA(1,0,0) with 

constant 

ARIMA(1,0,0) with constant 

(B) Linear trend = 308.828 + -
7.63053 t 

Linear trend = -12727.8 + 
17.837 t 

Linear trend = -3.81971E6 + 
5581.58 t 

Linear trend = -31.4643 + 
0.0424819 t 

(C) Simple exponential 

smoothing with alpha = 
0.0942 

Simple exponential smoothing 

with alpha = 0.0427 

Simple exponential 

smoothing with alpha = 
0.0155 

Simple exponential smoothing 

with alpha = 0.0384 

(D) Brown's linear exp. 

smoothing with alpha = 0.062 

Brown's linear exp. smoothing 

with alpha = 0.0169 

Brown's linear exp. 

smoothing with alpha = 
0.0075 

Brown's linear exp. smoothing 

with alpha = 0.0165 

(E) Brown's quadratic exp. 

smoothing with alpha = 
0.0488 

Brown's quadratic exp. 

smoothing with alpha = 0.0107 

Brown's quadratic exp. 

smoothing with alpha = 
0.0047 

Brown's quadratic exp. 

smoothing with alpha = 0.0101 

 

Table: 8. Error statistics by fitting the forecasting models to the SSPM coefficients of the 

monthly evapotranspiration semi variances based on the time series between 2015 and 2017 
Model a b c d 

RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME 

(A) 238.791 184.844 0.387769 1190.43 909.033 -9.28528 391055. 299864. -847.566 3.80627 3.05829 0.000123277 
(B) 245.74 195.605 -4.92E-14 1194.52 900.803 -1.54E-13 388978. 298244. -6.158E-10 3.9257 3.18125 2.69319E-15 

(C) 255.946 219.035 -33.2113 1212.02 910.849 159.493 390699. 313866. -31859.9 3.97308 2.96555 0.547744 

(D) 260.086 226.631 -49.4012 1203.89 908.729 129.743 390666. 313661. -29991.2 3.94586 3.02917 0.407009 
(E) 262.117 229.284 -52.3767 1201.19 908.687 115.293 390675. 313966. -31476.8 3.93933 3.03104 0.396925 

RMSE = root mean squared error, MAE = mean absolute error, ME = mean error 
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Table: 9. Forecasting of SSPM coefficients of the monthly evapotranspiration semivariances 

based on the time series between 2015 and 2017 using Brown's linear exp. smoothing with 

constant alpha 
Period a b c d 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 
Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit 

 8/17 176.043 -315.509 667.595 1505.47 -815.869 3826.81 650930. -102312. 1.40417E6 2.43295 -5.17505 10.0409 

 9/17 176.252 -315.427 667.932 1510.02 -812.628 3832.67 650756. -102571. 1.40408E6 2.44784 -5.16429 10.06 
10/17 176.461 -315.347 668.27 1514.57 -809.409 3838.55 650582. -102831. 1.40399E6 2.46274 -5.15361 10.0791 

11/17 176.671 -315.269 668.61 1519.12 -806.211 3844.45 650407. -103091. 1.40391E6 2.47763 -5.14299 10.0983 

12/17 176.88 -315.192 668.951 1523.67 -803.034 3850.38 650233. -103352. 1.40382E6 2.49253 -5.13244 10.1175 
 1/18 177.089 -315.116 669.294 1528.22 -799.88 3856.33 650059. -103613. 1.40373E6 2.50742 -5.12195 10.1368 

 2/18 177.298 -315.042 669.638 1532.77 -796.747 3862.3 649885. -103875. 1.40364E6 2.52232 -5.11153 10.1562 

 3/18 177.508 -314.969 669.984 1537.33 -793.636 3868.29 649711. -104138. 1.40356E6 2.53721 -5.10119 10.1756 

 4/18 177.717 -314.897 670.331 1541.88 -790.548 3874.3 649537. -104401. 1.40347E6 2.5521 -5.09091 10.1951 

 5/18 177.926 -314.828 670.68 1546.43 -787.482 3880.34 649362. -104665. 1.40339E6 2.567 -5.0807 10.2147 

 6/18 178.135 -314.759 671.03 1550.98 -784.439 3886.39 649188. -104930. 1.40331E6 2.58189 -5.07056 10.2343 
 7/18 178.345 -314.692 671.381 1555.53 -781.418 3892.47 649014. -105195. 1.40322E6 2.59679 -5.06049 10.2541 

 8/18 178.554 -314.627 671.734 1560.08 -778.42 3898.58 648840. -105461. 1.40314E6 2.61168 -5.05049 10.2738 

 9/18 178.763 -314.563 672.089 1564.63 -775.444 3904.7 648666. -105728. 1.40306E6 2.62657 -5.04056 10.2937 
10/18 178.972 -314.501 672.445 1569.18 -772.492 3910.85 648492. -105995. 1.40298E6 2.64147 -5.0307 10.3136 

11/18 179.181 -314.44 672.803 1573.73 -769.563 3917.03 648317. -106263. 1.4029E6 2.65636 -5.02092 10.3336 

12/18 179.391 -314.38 673.162 1578.28 -766.658 3923.22 648143. -106531. 1.40282E6 2.67126 -5.01121 10.3537 

 

Table: 10. Calibration of SSPM of the monthly evapotranspiration semivariances with 

forecasted coefficients between August 2017 and April 2018 based on the time series between 

2015 and 2017; which will be used in the validation stage. 
Image 
Date 

SSPM Ordinary Krigging Independent 
Variable 

August 

2017 

Evapotranspiration semivariance SSPM 176.043*Nugget+1505.47*J-Bessel(650930, 

2.43295) 

Evapotranspiration  

Map in August 
2016 PMRF 1.00003858791842 * x + -0.00877499054303144 

EMRF 0.000038587917828 * x + -0.008774990470659 

SEMRF 0.0000029327332672276 * x + -0.000666505665 

Samples 11709 

Mean Error -0.004002294030264697 

Root-Mean-Square Error 0.005188808075072052 

Mean Standardized Error -0.00030372741268137047 

Root-Mean-Square Standardized Error 0.0003925714187172654 

Average Standard  Error  13.180938969970756 

September 
2017 

Evapotranspiration semivariance SSPM 176.252*Nugget+1510.02*J-Bessel(650756, 
2.44784) 

Evapotranspiration 
Map in September 

2016 PMRF 1.00000588733684 * x + -0.00323041380988798 

EMRF 0.0000058873368449678 * x + -0.003230413810 

SEMRF 4.3227555161189e-7 * x + -0.000236305309632 

Samples 11709 

Mean Error -0.002808939172869688 

Root-Mean-Square Error 0.012148184153800867 

Mean Standardized Error -0.00020521445930467633 

Root-Mean-Square Standardized Error 0.0008817231141922124 

Average Standard  Error  13.687806452684532 

SSPM: Statistical Spatial Prediction Model, PMRF: Predicted versus Measured Regression 

Function, EMRF: Error versus Measured Regression Function, SEMRF: Standardized Error 

versus Measured Regression Function, PE: Prediction Errors 
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Table: 11. Calibration of SSPM of the monthly observed evapotranspiration semivariances 

between for 2017 based on the time series between 2015 and 2017; which will be used in the 

validation stage. 
Image Date SSPM Ordinary Krigging 

August 2017 Evapotranspiration semivariance SSPM 280.78*Nugget+1496.8*J-Bessel(1380800,0.01) 

PMRF 0.540279168262678 * x + 53.5961726423937 
EMRF -0.459720831737321 * x + 53.5961726423936 

SEMRF -0.0225043030693121 * x + 2.59282615084186 

Samples 9 
Mean Error 1.3412381015847903 

Root-Mean-Square Error 22.528504964545103 

Mean Standardized Error 0.0348370352967245 
Root-Mean-Square Standardized Error 0.9867032032596413 

Average Standard  Error  22.039174662732194 

September 2017 Evapotranspiration semivariance SSPM 835.07*Nugget+1970.7*J-Bessel(537800,0.01) 
PMRF 0.426725855617936 * x + 61.4134388937095 

EMRF -0.573274144382064 * x + 61.4134388937095 

SEMRF -0.0142833571494279 * x + 1.57091912314857 
Samples 11 

Mean Error -2.689033614466736 

Root-Mean-Square Error 41.611003653856514 
Mean Standardized Error -0.026219903560181054 

Root-Mean-Square Standardized Error 1.0310003001596355 

Average Standard  Error  43.533813746120124 

SSPM: Statistical Spatial Prediction Model, PMRF: Predicted versus Measured Regression 

Function, EMRF: Error versus Measured Regression Function, SEMRF: Standardized Error 

versus Measured Regression Function, PE: Prediction Errors 

 

Table: 12. Validation of the forecasting of SSPM corresponding to the observed 

evapotranspiration for 2017 and the evapotranspiration estimated with forecasted 

coefficients of the monthly evapotranspiration based on the time series between 2015 and 

2017 using Brown's linear exp. smoothing with constant alpha 
Image Date SSPM Statistics Independent Variable 

Forecasted Evapotranspiration Map 

in September 2017 

PMRF Forecasted = 1.02574*Measured Observed Evapotranspiration Map in 

September 2017 Samples 360 

CC 0.999928 

R2 0.999856 

R2
adjusted 0.999856 

SEE 1.22393 

MAE 1.0272 

DW 0.845245 

Forecasted Evapotranspiration Map 
in October 2017 

PRF Forecasted = 0.919342*Measured Observed Evapotranspiration Map in 
October 2017 Samples 350 

CC 0.999986 

R2 0.999972 

R2
adjusted 0.999972 

SEE 0.626462 

MAE 0.503439 
DW 0.285864 

PMRF: Predicted versus Measured Regression function, CC: Correlation Coefficient, R-squared: 

Determination Coefficient, R
2
adjusted: R-squared (adjusted), SEE: Standard Error of Estimation, MAE: 

Mean absolute error, DWs: Durbin-Watson statistic, x: observed value 

 

In general, the model selected for 
forecasting of coefficients of 
semivariances SSPM of monthly pumping 
flow is the model D corresponding to 
Brown's linear exp. smoothing with 
constant alpha because of the error 
statistics are in the group of lower values.  

 The forecasting of SSPM coefficients of 
the monthly pumping flow semivariances 
based on the time series between 2015 and 
2017 using Brown's quadratic exp. 
smoothing with constant alpha are shown 
in Table 15, the period for forecasting of 
monthly pumping flow covers from 8/17 
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(August 2017 to 12/18 (December, 2018). 
The values of coefficients have been 
selected for forecasting of monthly 
pumping flow for 12/18 as follows: for 
coefficient a: 1) forecast: 10.263, 2) Lower 
95.0% limit: 9.19104, 3) Upper 95.0% 
limit: 11.3349.  For coefficient b: 1) 
forecast: 49.3878, 2) Lower 95.0% limit: 
2.51383, 3) Upper 95.0% limit: 96.2618.  
For coefficient c: 1) forecast: 16999.4, 2) 
Lower 95.0% limit: 7745.14, 3) Upper 
95.0% limit: 26253.7. For coefficient d: 1) 
forecast: 1.77918, 2) Lower 95.0% limit: 
1.197, 3) Upper 95.0% limit: 2.36136. In 
Figure 3 is shown the map of forecasting 
of pumping flow, which varies between 0 
and 20 l/s. For this month, the maximum 
monthly pumping flow occurs between the 
middle and south region of the San Diego 
aquifer. 
 
The calibration of SSPM of the monthly 
pumping flow semivariances with 
forecasted coefficients for 2017 based on 
the time series between 2015 and 2017; 
which will be used in the validation stage 
is shown in Table 16, using the forecasted 
coefficients for the months of august 2017 
and September 2017 and obtaining the 
correlation statistics between the monthly 
evapotranspiration  spatial prediction and 
the measured values from the precipitation 
map for August 2016 and September 2016, 
respectively: for August 2017: 1) monthly 
evapotranspiration  semivariance SSPM is 
9.97905*Nugget+63.6095*J-
Bessel(21496.9, 1.55481), 2) PMRF: 
0.99539935584911 * x + 
0.0229489632869351, 3) EMRF: -
0.00460064415084568 * x + 
0.022948963286767 and 4) SEMRF: -
0.00142185681509449 * x + 
0.007116149604344. The statistics of 
prediction error are: 1) Mean Error: 
0.010181654684313146, 2) Root-Mean-
Square Error: 0.23739405887419587, 3) 
Mean Standardized Error: 
0.003171181756427858, 4) Root-Mean-
Square Standardized Error: 
0.07370419219507944and 6) Average 
Standard Error: 3.2201525228085703. 
 

The calibration of SSPM of the monthly 
pumping flow semivariances for  August 
2017 and October 2017 based on the 
observed time series between 2015 and 
2017; which will be used in the validation 
stage is shown in Table 17, obtaining the 
correlation statistics between the monthly 
pumping flow spatial prediction and the 
measured values from the monthly 
evapotranspiration  map for August 2016 
and October 2016, respectively: for 
August 2017: 1) Monthly pumping flow 
SSPM  is 15.602*Nugget+16.264*J-
Bessel(8061.5,1.3762), 2) PMRF: 
0.434176422688513 * x + 
4.30162297735632, 3) EMRF: -
0.565823577311485 * x + 
4.30162297735631 and 4) SEMRF: -
0.126334524710947 * x + 
0.970409259998791. The statistics of 
prediction error are: 1) Mean Error: 
0.022136598959744225, 2) Root-Mean-
Square Error: 4.320368124219371, 3) 
Mean Standardized Error: 
0.0027951259984918273, 4) Root-Mean-
Square Standardized Error: 
0.9975122712102633and 6) Average 
Standard Error: 4.454346970456804. 
 
The validation of the forecasting of SSPM 
corresponding to the observed monthly 
pumping flow for 2018 and the monthly 
pumping flow estimated with forecasted 
coefficients of the monthly pumping flow 
based on the time series between 2015 and 
2017 is carried on using Brown's linear 
exp. smoothing with constant alpha, as it is 
indicated in Table 18 and Figure 4; 
observing that the extracted values from 
the forecasted monthly pumping flow map 
in August 2017 are correlated to the 
extracted values from the monthly 
pumping flow map in August 2017, 
finding the following statistical 
parameters: PMRF: Predicted versus 
Measured Regression function: Forecasted 
= 0.91709*Observed, CC: Correlation 
Coefficient: 0.9846, R-squared: 
Determination Coefficient: 0.969437, 
R

2
adjusted: R-squared (adjusted): 

0.969437, SEE: Standard Error of 
Estimation: 0.807491, MAE: Mean 
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absolute error: 0.700359, DWs: Durbin-
Watson statistic: 0.0302105. In Figure 4d, 
it is possible to observe the graphics of 
observed versus predicted in water balance 
variables to assess the performance of the 

spatio – temporal hybrid  model, the dots 
are close to the line of slope 1:1, indicating 
a successful adjustment between monthly 
precipitation predicted values and monthly 
precipitation observed values. 

 

Table: 13. Forecasting of SSPM coefficients of the monthly pumping flow semivariances 

based on the time series between 2015 and 2017 
 Coefficient 

 a b c d 

(A) ARIMA(1,0,1) with constant ARIMA(1,0,2) with constant ARIMA(1,0,1) with 

constant 

ARIMA(1,0,1) with constant 

(B) Linear trend = -8.21905 + 

0.0224575 t 

Linear trend = -174.212 + 

0.30422 t 

Linear trend = 118076. + -

117.407 t 

Linear trend = 0.636943 + 

0.000986653 t 

(C) Simple exponential 
smoothing with alpha = 

0.3166 

Simple exponential smoothing 
with alpha = 0.5182 

Simple exponential 
smoothing with alpha = 

0.5247 

Simple exponential smoothing 
with alpha = 0.3663 

(D) Brown's linear exp. 
smoothing with alpha = 

0.1589 

Brown's linear exp. smoothing 
with alpha = 0.2668 

Brown's linear exp. 
smoothing with alpha = 

0.2287 

Brown's linear exp. smoothing 
with alpha = 0.1829 

(E)  Brown's quadratic exp. 
smoothing with alpha = 

0.1088 

Brown's quadratic exp. 
smoothing with alpha = 0.1836 

Brown's quadratic exp. 
smoothing with alpha = 

0.1154 

Brown's quadratic exp. 
smoothing with alpha = 

0.1242 

 

Table: 14. Error statistics by fitting the forecasting models to the SSPM coefficients of the 

monthly pumping flow semivariances based on the time series between 2015 and 2017 
Model a b c d 

RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME 

(A) 0.243571 0.18554 0.0165821 4.81715 3.68365 0.121959 1231.71 791.737 -86.7783 0.101847 0.0703192 -0.0004200 

(B) 0.215797 0.177117 3.896E-15 5.84314 4.7015 -8.9E-15 1172.5 840.302 8.449E-12 0.104591 0.0776037 5.0854E-16 
(C) 0.236881 0.187756 0.0459251 5.13375 3.31619 0.178013 1207.64 772.36 -227.027 0.104168 0.0732113 0.00883869 

(D) 0.240064 0.192478 0.0374056 5.36387 3.51088 -0.28295 1243.87 810.895 -199.79 0.10717 0.0748443 0.011852 

(E) 0.243439 0.194055 0.0181451 5.49304 3.63583 -0.62612 1250.86 824.288 -197.601 0.108773 0.0761877 0.0104421 

RMSE = root mean squared error, MAE = mean absolute error, ME = mean error 

 

Table: 15. Forecasting of SSPM coefficients of the monthly pumping flow semivariances 

based on the time series between 2015 and 2017 using Brown's linear exp. smoothing with 

constant alpha 
Period a b c d 

 Lower 
95.0% 

Upper 
95.0% 

 Lower 
95.0% 

Upper 
95.0% 

 Lower 
95.0% 

Upper 
95.0% 

 Lower 
95.0% 

Upper 
95.0% 

Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit 

8/17 9.97905 9.51618 10.4419 63.6095 53.2674 73.9516 21496.9 19097.8 23896.0 1.55481 1.34815 1.76147 

9/17 9.99679 9.511 10.4826 62.7206 51.0158 74.4255 21215.8 18561.0 23870.6 1.56884 1.34814 1.78953 

10/17 10.0145 9.50332 10.5258 61.8318 48.5827 75.0809 20934.7 17991.2 23878.2 1.58286 1.34646 1.81926 
11/17 10.0323 9.49324 10.5713 60.9429 45.9891 75.8968 20653.6 17391.6 23915.7 1.59688 1.34322 1.85054 

12/17 10.05 9.48086 10.6192 60.0541 43.2525 76.8557 20372.5 16764.9 23980.1 1.6109 1.33853 1.88328 

1/18 10.0678 9.4663 10.6692 59.1652 40.3869 77.9436 20091.4 16113.8 24069.0 1.62493 1.33247 1.91738 
2/18 10.0855 9.44968 10.7213 58.2764 37.4037 79.149 19810.3 15440.3 24180.4 1.63895 1.32516 1.95275 

3/18 10.1033 9.43111 10.7754 57.3875 34.3121 80.4629 19529.3 14746.1 24312.4 1.65297 1.31666 1.98929 

4/18 10.121 9.41069 10.8313 56.4987 31.1196 81.8777 19248.2 14032.6 24463.7 1.667 1.30705 2.02694 
5/18 10.1387 9.38852 10.889 55.6098 27.8322 83.3874 18967.1 13301.1 24633.0 1.68102 1.29641 2.06563 

6/18 10.1565 9.3647 10.9483 54.721 24.4551 84.9868 18686.0 12552.6 24819.3 1.69504 1.28479 2.1053 

7/18 10.1742 9.3393 11.0092 53.8321 20.9926 86.6716 18404.9 11787.9 25021.8 1.70907 1.27224 2.1459 
8/18 10.192 9.31239 11.0716 52.9432 17.4484 88.4381 18123.8 11007.8 25239.8 1.72309 1.25881 2.18737 

9/18 10.2097 9.28406 11.1354 52.0544 13.8258 90.283 17842.7 10212.9 25472.4 1.73711 1.24453 2.22969 

10/18 10.2275 9.25435 11.2006 51.1655 10.1275 92.2036 17561.6 9403.89 25719.3 1.75114 1.22945 2.27282 
11/18 10.2452 9.22333 11.2671 50.2767 6.35611 94.1973 17280.5 8581.14 25979.9 1.76516 1.2136 2.31672 

12/18 10.263 9.19104 11.3349 49.3878 2.51383 96.2618 16999.4 7745.14 26253.7 1.77918 1.197 2.36136 

 

 

 

0.192478
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Table: 16. Calibration of SSPM coefficients of the monthly pumping flow semivariances with 

forecasted coefficients between August 2017 and April 2018 based on the time series between 

2015 and 2017; which will be used in the validation stage. 
Image 

Date 

SSPM Ordinary Krigging Independent Variable 

August 

2017 

Pumping flow semivariance SSPM 9.97905*Nugget+63.6095*J-Bessel(21496.9, 1.55481) Pumping Flow  Map 

in August 2016 PMRF 0.99539935584911 * x + 0.0229489632869351 

EMRF -0.0046006441508456 * x + 0.022948963286767 

SEMRF -0.0014218568150944 * x + 0.007116149604344 

Samples 11709 

Mean Error 0.010181654684313146 

Root-Mean-Square Error 0.23739405887419587 

Mean Standardized Error 0.003171181756427858 

Root-Mean-Square Standardized Error 0.07370419219507944 

Average Standard  Error  3.2201525228085703 

September 
2017 

Pumping flow semivariance SSPM 9.99679*Nugget+62.7206*J-Bessel(21215.8, 1.56884) Pumping Flow  in 
September 2016 PMRF 0.995913354587144 * x + 0.0231544580284524 

EMRF -0.004086645412717 * x + 0.0231544580279029 

SEMRF -0.00126375364501 * x + 0.00718706980210105 

Samples 11709 

Mean Error 0.010228743004009822 

Root-Mean-Square Error 0.23476709072787713 

Mean Standardized Error 0.003188871566307957 

Root-Mean-Square Standardized Error 0.07295534999658784 

Average Standard  Error  3.21709227556127 

SSPM: Statistical Spatial Prediction Model, PMRF: Predicted versus Measured Regression 

Function, EMRF: Error versus Measured Regression Function, SEMRF: Standardized Error 

versus Measured Regression Function, PE: Prediction Errors 

 

 

 

Table: 17. Calibration of SSPM of the monthly observed pumping flow between for 2017 

based on the time series between 2015 and 2017; which will be used in the validation stage. 
Image Date SSPM Ordinary Krigging 

August 2017 Pumping flow semivariance SSPM 15.602*Nugget+16.264*J-Bessel(8061.5,1.3762) 

PMRF 0.434176422688513 * x + 4.30162297735632 

EMRF -0.565823577311485 * x + 4.30162297735631 
SEMRF -0.126334524710947 * x + 0.970409259998791 

Samples 211 

Mean Error 0.022136598959744225 
Root-Mean-Square Error 4.320368124219371 

Mean Standardized Error 0.0027951259984918273 

Root-Mean-Square Standardized Error 0.9975122712102633 

Average Standard  Error  4.454346970456804 

September 2017 Pumping flow semivariance SSPM 16.631*Nugget+15.428*J-Bessel(8283.3,0.69158) 

PMRF 0.425447930422264 * x + 4.29093822143496 
EMRF -0.574552069577737 * x + 4.29093822143496 

SEMRF -0.126544281076566 * x + 0.954839465406789 

Samples 219 
Mean Error 0.0493290389539815 

Root-Mean-Square Error 4.53649248513504 

Mean Standardized Error 0.006873206966958036 
Root-Mean-Square Standardized Error 0.006873206966958036 

Average Standard  Error  4.581317158059182 

SSPM: Statistical Spatial Prediction Model, PMRF: Predicted versus Measured Regression 

Function, EMRF: Error versus Measured Regression Function, SEMRF: Standardized Error 

versus Measured Regression Function, PE: Prediction Errors 
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Table: 18. Validation of the forecasting of SSPM corresponding to the observed pumping 

flow for 2017 and the pumping flow estimated with forecasted coefficients of the monthly 

pumping flow based on the time series between 2016 and 2017  
Image Date SSPM Statistics Independent Variable 

Forecasted Pumping 

Flow Map in 
September 2017 

PRF Forecasted = 0.91709*Observed Observed Pumping Flow Map in 

September 2016 Samples 127 

CC 0.9846 

R2 0.969437 

R2
adjusted 0.969437 

SEE 0.807491 

MAE 0.700359 

DW 0.0302105 

PRF: Predicted Regression function, CC: Correlation Coefficient, R-squared: Determination 

Coefficient, R
2

adjusted: R-squared (adjusted), SEE: Standard Error of Estimation, MAE: Mean 

absolute error, DWs: Durbin-Watson statistic, x: observed value 

 
Forecasting of Infiltration 
The forecasting of SSPM coefficients of 
the monthly infiltration semivariances 
based on the time series between 2015 and 
2017 are shown in Table 19; where it is 
observed that the tested models are the 
five, as a sample, the results found for the 
coefficient ―a‖ are as follows: A) 
ARIMA(1,0,0) with constant, B) Linear 
trend = -534.936 + 0.722448 t, C) Simple 
exponential smoothing with alpha = 
0.0618, 4) Brown's linear exp. smoothing 
with alpha = 0.0707 and D) Brown's 
quadratic exp. smoothing with alpha = 
0.0571. 
 
The error statistics by fitting the 
forecasting models to the SSPM 
coefficients of the monthly infiltration 
semivariances based on the time series 
between 2015 and 2017 are shown in 
Table 20, which are expressed in terms of 
three statistics of errors, as a sample, the 
results found for the coefficient ―a‖ are as 
follows: for model A: 1) RMSE: 38.393, 
2) MAE: 31.5795, and 3) ME: 0.512365. 
For model B: 1) RMSE: 39.732, 2) MAE: 
33.1322, and 3) ME: 5.04256E-14. For 
model C: 1) RMSE: 40.7103, 2) MAE: 
35.9983, and 3) ME: 0.0902728. For 
model D: 1) RMSE: 42.5248, 2) MAE: 
35.3469, and 3) ME: 9.24911. For model 
E: 1) RMSE: 43.0137, 2) MAE: 35.7074, 
and 3) ME: 8.42748.   In general, the 
model selected for forecasting of 
coefficients of semivariances SSPM of 

monthly infiltration is the model D 
corresponding to Brown's linear exp. 
smoothing with constant alpha because of 
the error statistics are in the group of lower 
values.  
  
The forecasting of SSPM coefficients of 
the monthly infiltration semivariances 
based on the time series between 2015 and 
2017 using Brown's quadratic exp. 
smoothing with constant alpha are shown 
in Table 21, the period for forecasting of 
monthly infiltration covers from 8/17 
(August 2017 to 12/18 (December, 2018). 
The values of coefficients have been 
selected for forecasting of monthly 
infiltration for 12/18 as follows: for 
coefficient a: 1) forecast: 49.622, 2) Lower 
95.0% limit: -50.6999, 3) Upper 95.0% 
limit: 149.944.  For coefficient b: 1) 
forecast: 44.3168, 2) Lower 95.0% limit: -
47.9117, 3) Upper 95.0% limit: 136.545.  
For coefficient c: 1) forecast: 4874.01, 2) 
Lower 95.0% limit: -1463.89, 3) Upper 
95.0% limit: 11211.9. For coefficient d: 1) 
forecast: 5.01916, 2) Lower 95.0% limit: -
0.47252, 3) Upper 95.0% limit: 10.5108. 
In Figure 3 is shown the map of 
forecasting of monthly infiltration, which 
varies between 30 and 61 mm/month. For 
this month, the maximum monthly 
infiltration occurs between the north and 
south region of the San Diego aquifer, the 
middle region is the urban zone where the 
infiltration takes the lower values.   
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Forecasting of Volume Stored 
The forecasting of SSPM coefficients of 
the monthly volume stored semivariances 
based on the time series between 2015 and 
2017 are shown in Table 22; where it is 
observed that the tested models are the 
five, as a sample, the results found for the 
coefficient ―a‖ are as follows: A) 
ARIMA(1,0,0) with constant, B) Linear 
trend = -534.936 + 0.722448 t, C) Simple 
exponential smoothing with alpha = 
0.0618, D) Brown's linear exp. smoothing 
with alpha = 0.0707 and E) Brown's 
quadratic exp. smoothing with alpha = 
0.0571. 
 
The error statistics by fitting the 
forecasting models to the SSPM 
coefficients of the monthly volume stored 
semivariances based on the time series 
between 2015 and 2017 are shown in 
Table 23, which are expressed in terms of 
three statistics of errors, as a sample, the 
results found for the coefficient ―a‖ are as 
follows: for model A: 1) RMSE: 24.8233, 
2) MAE: 15.9137, and 3) ME: -0.0170661. 
For model B: 1) RMSE: 24.2663, 2) MAE: 
15.3826, and 3) ME: -1.20334E-15. For 

model C: 1) RMSE: 24.97, 2) MAE: 
15.9582, and 3) ME: 0.413056. For model 
D: 1) RMSE: 25.1666, 2) MAE: 15.9134, 
and 3) ME: 0.803444. For model E: 1) 
RMSE: 26.4411, 2) MAE: 14.8449, and 3) 
ME: 5.60892.   In general, the model 
selected for forecasting of coefficients of 
semivariances SSPM of monthly volume 
stored is the model D corresponding to 
Brown's linear exp. smoothing with 
constant alpha because of the error 
statistics are in the group of lower values.   
 
The forecasting of SSPM coefficients of 
the monthly volume stored semivariances 
based on the time series between 2015 and 
2017 using Brown's quadratic exp. 
smoothing with constant alpha are shown 
in Table 24, the period for forecasting of 
monthly volume stored covers from 8/17 
(August 2017 to 12/18 (December, 2018). 
The values of coefficients have been 
selected for forecasting of monthly volume 
stored for 12/18 as follows: for coefficient 
a: 1) forecast: 11.3475, 2) Lower 95.0% 
limit: -37.8087, 3) Upper 95.0% limit: 
60.5038.  

 

Table: 19. Forecasting of SSPM coefficients of the monthly infiltration (mm/month) 

semivariances based on the time series between 2015 and 2017 
 Coefficient 

 a b c d 

(A) ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant 

(B) Linear trend = -534.936 + 

0.722448 t 

Linear trend = -840.005 + 

1.11164 t 

Linear trend = 28874.4 + -

30.1244 t 

Linear trend = 36.4871 + -

0.0393274 t 
(C) Simple exponential smoothing 

with alpha = 0.0618 

Simple exponential 

smoothing with alpha = 

0.0381 

Simple exponential 

smoothing with alpha = 

0.0352 

Simple exponential smoothing 

with alpha = 0.0179 

(D) Brown's linear exp. smoothing 

with alpha = 0.0707 

Brown's linear exp. 

smoothing with alpha = 

0.0147 

Brown's linear exp. 

smoothing with alpha = 

0.0152 

Brown's linear exp. smoothing 

with alpha = 0.0085 

(E)  Brown's quadratic exp. 

smoothing with alpha = 0.0571 

Brown's quadratic exp. 

smoothing with alpha = 

0.0094 

Brown's quadratic exp. 

smoothing with alpha = 

0.0096 

Brown's quadratic exp. 

smoothing with alpha = 0.0054 

 

Table: 20. Error statistics by fitting the forecasting models to the SSPM coefficients of the 

monthly infiltration (mm/month) semivariances based on the time series between 2015 and 

2017 
Model a b c d 

RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME 

(A) 38.393 31.5795 0.512365 47.2907 36.5492 0.0509439 3233.37 2520.43 -7.26632 2.7214 2.14172 -0.00253684 

(B) 39.732 33.1322 5.04256E-14 46.2048 34.7704 -2.0628E-14 3259.3 2569.56 8.80156E-14 2.82666 2.12034 -4.34061-15 

(C) 40.7103 35.9983 0.0902728 47.3493 37.2951 -0.0299189 3289.4 2578.28 256.381 2.84185 2.13461 0.233241 

(D) 42.5248 35.3469 9.24911 47.4695 37.6039 -0.37612 3284.07 2593.1 181.053 2.84125 2.1415 0.217685 

(E) 43.0137 35.7074 8.42748 47.5149 37.6708 -0.15157 3283.32 2597.03 164.26 2.84123 2.13993 0.223722 

RMSE = root mean squared error, MAE = mean absolute error, ME = mean error 
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Table: 21. Forecasting of SSPM coefficients of the monthly infiltration (mm/month) 

semivariances based on the time series between 2015 and 2017 
Period a b c d 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit 

 8/17 46.6564 -35.3257 128.638 45.8805 -45.6453 137.406 4855.35 -1476.65 11187.4 4.99118 -0.487024 10.4694 
 9/17 46.8417 -35.9263 129.61 45.7828 -45.7826 137.348 4864.68 -1470.25 11199.6 4.99293 -0.486067 10.4719 

10/17 47.0271 -36.5742 130.628 45.685 -45.9204 137.291 4874.01 -1463.89 11211.9 4.99468 -0.485116 10.4745 

11/17 47.2124 -37.2698 131.695 45.5873 -46.0589 137.233 4883.33 -1457.58 11224.2 4.99643 -0.484172 10.477 
12/17 47.3978 -38.0136 132.809 45.4896 -46.1978 137.177 4892.66 -1451.31 11236.6 4.99817 -0.483235 10.4796 

 1/18 47.5831 -38.8056 133.972 45.3918 -46.3374 137.121 4901.99 -1445.08 11249.1 4.99992 -0.482305 10.4822 

 2/18 47.7685 -39.6462 135.183 45.2941 -46.4775 137.066 4911.31 -1438.9 11261.5 5.00167 -0.481381 10.4847 

 3/18 47.9538 -40.5354 136.443 45.1964 -46.6183 137.011 4920.64 -1432.76 11274.0 5.00342 -0.480464 10.4873 

 4/18 48.1392 -41.4732 137.752 45.0986 -46.7596 136.957 4929.97 -1426.67 11286.6 5.00517 -0.479554 10.4899 

 5/18 48.3245 -42.4594 139.108 45.0009 -46.9015 136.903 4939.29 -1420.62 11299.2 5.00692 -0.478651 10.4925 
 6/18 48.5099 -43.494 140.514 44.9032 -47.044 136.85 4948.62 -1414.62 11311.9 5.00867 -0.477754 10.4951 

 7/18 48.6952 -44.5767 141.967 44.8054 -47.1871 136.798 4957.95 -1408.66 11324.6 5.01041 -0.476865 10.4977 

 8/18 48.8806 -45.7072 143.468 44.7077 -47.3308 136.746 4967.27 -1402.75 11337.3 5.01216 -0.475982 10.5003 
 9/18 49.0659 -46.8852 145.017 44.61 -47.4751 136.695 4976.6 -1396.88 11350.1 5.01391 -0.475106 10.5029 

10/18 49.2513 -48.1102 146.613 44.5122 -47.62 136.644 4855.35 -1476.65 11187.4 5.01566 -0.474237 10.5056 

11/18 49.4367 -49.382 148.255 44.4145 -47.7655 136.595 4864.68 -1470.25 11199.6 5.01741 -0.473375 10.5082 
12/18 49.622 -50.6999 149.944 44.3168 -47.9117 136.545 4874.01 -1463.89 11211.9 5.01916 -0.47252 10.5108 

For coefficient b: 1) forecast: 40.6372, 2) Lower 95.0% limit: -62.6986, 3) Upper 95.0% 

limit: 143.973.  For coefficient c: 1) forecast: 4996.3, 2) Lower 95.0% limit: -1581.23, 3) 

Upper 95.0% limit: 11573.8. For coefficient d: 1) forecast: 6.4323, 2) Lower 95.0% limit: 

0.39153, 3) Upper 95.0% limit: 12.4731. 

 
In Figure 3 is shown the map of 
forecasting of monthly volume stored, 
which varies between -110 and -77 
mm/month. For this month, the monthly 
volume stored takes negative values 
because of the monthly infiltration value is 
lower than the monthly evapotranspiration 
and the monthly pumping flow, as well as, 
the San Diego aquifer is a confined 

aquifer; which contains clay and silt layers 
alternating with well graded sand and 
gravel. This composition of lithological 
profile reduces the possibility that the San 
Diego aquifer can obtain direct water 
recharge by hydrological processes as 
infiltration. The water recharge might be 
provided by rivers and other groundwater 
sources, being an indirect water research.  

 

Table: 22. Forecasting of SSPM coefficients of the monthly volume stored semivariances 

based on the time series between 2015 and 2017 
 Coefficient 

 a b c d 

(A) ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant 

(B) Linear trend = -441.672 + 

0.572825 t 

Linear trend = -1456.53 + 

1.89218 t 

Linear trend = -44903.9 + 

63.7966 t 

Linear trend = 18.3775 + -

0.0153342 t 
(C) Simple exponential smoothing 

with alpha = 0.0549 

Simple exponential smoothing 

with alpha = 0.1048 

Simple exponential smoothing 

with alpha = 0.0707 

Simple exponential smoothing 

with alpha = 0.0049 

(D) Brown's linear exp. smoothing 

with alpha = 0.0193 

Brown's linear exp. smoothing 

with alpha = 0.0215 

Brown's linear exp. smoothing 

with alpha = 0.0219 

Brown's linear exp. smoothing 

with alpha = 0.0064 

(E) Brown's quadratic exp. 
smoothing with alpha = 0.048 

Brown's quadratic exp. 
smoothing with alpha = 0.0721 

Brown's quadratic exp. 
smoothing with alpha = 0.0594 

Brown's quadratic exp. 
smoothing with alpha = 0.004 
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Table: 23. Error statistics by fitting the forecasting models to the SSPM coefficients of the 

monthly volume stored semivariances based on the time series between 2015 and 2017 
Model a b c d 

RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME 

(A) 24.8233 15.9137 -0.0170661 50.9443 38.7057 0.250558 3273.69 2703.85 1.09668 2.79456 2.47705 0.0682554 

(B) 24.2663 15.3826 -1.20334E-15 48.3873 37.3104 -2.796E-14 3221.57 2646.78 -1.951E-12 3.14316 2.74403 2.14882E-16 

(C) 24.97 15.9582 0.413056 51.1079 41.3342 7.72181 3298.33 2778.76 53.9417 3.13796 2.76214 -0.478747 

(D) 25.1666 15.9134 0.803444 52.8838 42.6312 6.21051 3355.51 2785.06 230.213 3.12905 2.77503 -0.331947 

(E) 26.4411 14.8449 5.60892 54.2384 41.908 8.89848 3399.17 2742.38 506.203 3.12875 2.77373 -0.338518 

RMSE = root mean squared error, MAE = mean absolute error, ME = mean error 

 

Table: 24. Forecasting of SSPM coefficients of the monthly volume stored semivariances 

based on the time series between 2015 and 2017 
Period a b c d 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 
Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit 

 8/17 13.5063 -35.0099 62.0226 47.0431 -54.7788 148.865 5555.58 -912.047 12023.2 6.44509 0.410403 12.4798 

 9/17 13.3714 -35.1798 61.9226 46.6427 -55.2614 148.547 5520.63 -952.923 11994.2 6.44429 0.409239 12.4793 

10/17 13.2365 -35.3504 61.8234 46.2424 -55.7456 148.23 5485.67 -993.921 11965.3 6.44349 0.408072 12.4789 
11/17 13.1016 -35.5216 61.7248 45.842 -56.2314 147.915 5450.72 -1035.04 11936.5 6.44269 0.406904 12.4785 

12/17 12.9666 -35.6935 61.6268 45.4416 -56.7189 147.602 5415.76 -1076.29 11907.8 6.44189 0.405733 12.4781 
 1/18 12.8317 -35.8661 61.5295 45.0413 -57.2079 147.29 5380.81 -1117.66 11879.3 6.44109 0.404561 12.4776 

 2/18 12.6968 -36.0393 61.4328 44.6409 -57.6986 146.98 5345.85 -1159.15 11850.9 6.44029 0.403386 12.4772 

 3/18 12.5619 -36.2131 61.3368 44.2405 -58.191 146.672 5310.9 -1200.77 11822.6 6.43949 0.40221 12.4768 
 4/18 12.4269 -36.3877 61.2415 43.8402 -58.685 146.365 5275.94 -1242.52 11794.4 6.4387 0.401031 12.4764 

 5/18 12.292 -36.5629 61.1469 43.4398 -59.1807 146.06 5240.99 -1284.4 11766.4 6.4379 0.399851 12.4759 

 6/18 12.1571 -36.7388 61.0529 43.0394 -59.6781 145.757 5206.03 -1326.41 11738.5 6.4371 0.398668 12.4755 
 7/18 12.0222 -36.9154 60.9597 42.6391 -60.1772 145.455 5171.08 -1368.55 11710.7 6.4363 0.397483 12.4751 

 8/18 11.8872 -37.0926 60.8671 42.2387 -60.678 145.155 5136.12 -1410.82 11683.1 6.4355 0.396297 12.4747 

 9/18 11.7523 -37.2706 60.7752 41.8383 -61.1805 144.857 5101.17 -1453.22 11655.6 6.4347 0.395108 12.4743 
10/18 11.6174 -37.4493 60.684 41.4379 -61.6848 144.561 5066.21 -1495.76 11628.2 6.4339 0.393917 12.4739 

11/18 11.4824 -37.6286 60.5935 41.0376 -62.1908 144.266 5031.26 -1538.43 11600.9 6.4331 0.392724 12.4735 

12/18 11.3475 -37.8087 60.5038 40.6372 -62.6986 143.973 4996.3 -1581.23 11573.8 6.4323 0.39153 12.4731 

 

DISCUSSION OF RESULTS 

The statistical spatial prediction models of 

semivariances for water balance variables 

predicted for December 2018: a) 

Precipitation, b) Evapotranspiration, c) 

Pumping flow, d) Infiltration and e) 

Volume Stored are shown in Figure 5 

observing that the binned (red dots) and 

averaged values (blue cross) are located 

close to the line corresponding to the J-

Bessel function; which is the geostatistical 

model applied in the water balance 

variables. The adjustment to the 

semivariances of each water balance 

variable to the geostatistical model is 

based on the semivariances trends to be 

small for groups of values located in a 

small distance and the semivariances are 

increased in a value identified as sill 

trending to be constant as the distance of 

the predicted values is increased. The 

characteristics of the semivariograms 

shown in Figure 5 are three: 1) Nugget, 2) 

Sill and 3) Range; which are represented 

by the predicted coefficients given in the 

Tables 3, 9, 15, 21 and 24 identified as a, b 

and c for the predictions corresponding to 

December, 2018.  
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Fig: 5. Statistical spatial prediction model of semivariances for water balance variables 

predicted for December 2018: a) Precipitation, b)Evapotranspiration, c) Pumping flow, d) 

Infiltration and e) Volume Stored 

 

As a sample, the coefficients for the 

precipitation semivariances are shown in 

Table as follows: 1) a: 5812.25, 2) b: 

3497.94 and 3) c: 4996.3; where the 

nugget is the semivariogram model 

intercept with the y-axis, it is associated to 

spatial sources of variation at distances  

smaller than the sampling interval.
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The sill is the value where the 

semivariogram model attains at the range 

(the value on the y-axis). The partial sill is 

the sill minus the nugget. The distance 

where the model first flattens out is known 

as the range.  

 

CONCLUSION 

The spatio-temporal forecasting models of 

water balance variables in the San Diego 

aquifer have been calibrated and validated 

showing a successful adjustment to the 

water balance variables as the following 

five variables: 1) precipitation, 2) 

evapotranspiration, 3) pumping flow, 4) 

infiltration and 5) volume stored. In the 

calibration stage, the statistical spatial 

prediction model selected has been J-

Bessel and the forecasting model selected 

has been Brown's quadratic exp. 

smoothing with constant alpha.  In the 

validation stage, the correlation coefficient 

has taken values upper to 0.98 and the 

determination coefficient upper to 0.96 

confirming that the method used to 

generate the spatio-temporal forecasting 

model to achieve good predictions to the 

water balance variables. 
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