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Abstract 

Proper incorporation of short channel effects in nanoscale SOI MOSFET modeling demands 

total two dimensional potential analysis through out the device as the field is truly two-

dimensional (2D) in nature. 2D potential profile in the channel, based on Poisson’s equation 

solution, have been extensively studied but similar in-depth analysis in the buried oxide layer 

is yet to be carried out. Miniaturization of device dimension makes 2D potential analysis in 

the buried layer indispensable as fringing field and substrate bias effect have huge impact on 

device performance, especially in nano regime. In this work, an analytical model of 2D 

potential profile in the buried oxide layer of SOI MOSFET has been developed by solving 2D 

Poisson’s equation.  

 

Indexing terms/Keywords: Short Channel effects, Fringing field, SOI MOSFET, Analytical 

Modeling  

 

INTRODUCTION  

Performance improvement of VLSI 

circuits has been achieved by increasing 

the speed, decreasing the power 

consumption and miniaturizing the devices 

[1]. As scaling of planar CMOS has faced 

significant challenges, several 

nonconventional geometrical MOS 

structures have been proposed and studied 

experimentally as well as theoretically [1]. 

Among those structures, silicon-on-

insulator (SOI) structure has attracted 

much attention of most of the researchers 

due to some of its inherent functional 

advantages and easier fabrication 

methodology [2]. SOI technology offers 

many advantages over its bulk counterpart 

like higher speed, lower power dissipation, 

higher radiation tolerance, lower parasitic 

capacitance, lower short channel effects, 

manufacturing compatibility with the 

existing bulk silicon CMOS technology 

[3]. Even though SOI shows superior 

performance over its bulk counterpart, 

there are unavoidable issues like short-

channel effects (SCE) which arises with 

SOI devices in nano regime [4]. Further 

downscaling of SOI MOSFET can be 

realized with fully depleted and short-

channel control which requires ultra-thin 

films and some specific technological 

solutions. Simulation based circuit analysis 

demands less complex analytical model 

which can be incorporated in circuit 

simulator to figure out its true 

functionality and advantages as a 

nanoscale MOS transistor [4].    

 

In an ultra thin SOI structure, potential at 

the channel back interface significantly 

influences the 2D potential profile in the 

channel region. The potential at the back 

interface is influence by the substrate bias 

and the fringing field initiated by the 

drain-source bias. In order to analyze the 

channel back interface potential, a 2D 

potential model underneath the silicon 

film, is very much essential. 2D analysis of 

potential profile in the channel region has 

been studied extensively but a little 

attention is paid for potential analysis in 

the buried oxide (BOX) or buried layer 
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(BL) region [5, 6]. In the channel, 

considering a parabolic potential profile, 

Poisson’s equation is solved with proper 

boundary conditions [7]. The true nature of 

the potential profile in the BOX is very 

complex and the solution of Poisson’s 

equation is much more complex than the 

channel region. Poisson’s equation needs 

proper boundary conditions to be solved 

and finding of proper boundary conditions 

in BOX region is also a difficult task. 

Using similar potential profile in the 

channel and BOX region [8] and very 

complex Green’s function [9, 10] potential 

analysis in the BOX region has been 

carried out previously. Analyses using the 

idea of semiphysical approach [11], 

Laplace’s serial development [11], 

empirical modeling [12] and conformal 

mapping [13] have also been proposed. 

However, there is still plenty of room for 

further improvement in 2D potential model 

in BOX region [13]. Solution of 2D 

Poisson’s equation is the mostly accepted 

approach for potential profile analysis in 

the channel region. The Poisson’s equation 

in BOX turns into Laplace’s equation as 

buried oxide trap charge density is 

negligible. In the present work, 2D 

potential profile in the BOX region is 

analyzed with an analytical model 

developed by solving 2D Poisson’s 

equation. Entire analysis has been 

intentionally restricted in the BOX region 

only. 

 

Theory 

A layered shallow source-drain SOI 

structure is shown in the Fig. 1. Let tf, tSi, tb 

and tsub be the thicknesses of gate oxide, 

silicon channel layer, buried oxide layer 

and substrate layer respectively and L is 

the metallurgical channel length of the 

device.  

  

 
Fig. 1: Cross sectional view of SSDS SOI MOSFET. 

 

Let ,  and  be the interface 

potentials at the front gate oxide - channel, 

channel-BOX and BOX-substrate, 

respectively. Horizontal direction is 

represented with x coordinate and x is 

considered to be zero at the middle of the 

channel. The BOX region is initially 

divided into three regions, Reg.1, Reg. 2 

and Reg.3 respectively as shown in Fig.1. 

Two virtual vertical planes, P1 (at x=-L/2) 

and P2 (at x=+L/2), extended along the 

width of the device (z –coordinate) are 

assumed. Interestingly, the potential on 

these planes are function of ‘y’ but 

independent of ‘z’ and ‘x’ positions. 

Planes P1 and P2 are assigned potentials V1 
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and V2, respectively. Vertical direction is 

represented by ‘y’ coordinate with y=0 at 

front gate oxide-channel interface, y=tSi at 

channel-BOX interface and y=tSi+tb at 

BOX-substrate interface 

 

Analytical Model  

Considering free charge density in the 

BOX region to be zero, two dimensional 

Poisson’s equation is transformed into a 2-

D Laplace’s equation and is written as;  

0
),(),(

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
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
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  (1) 

where (x,y) is the 2D potential in the 

buried oxide layer. Solution of similar type 

of equation is discussed in the book of 

electrostatics by D. J. Grifith [14] and 

potential profile in the BOX region can be 

represented in a generalized form as a 

product of two independent functions [14]; 

)()(),( yYxXyx                                                                                      

  (2) 

Putting eqn. 2 in eqn. 1; forming partial 

differential equation through separation of 

variables; converting partial differential 

equation into an ordinary differential 

equation; solving the ordinary differential 

equation, the general solution of potential 

function can be written in the form [14] 

))cos()sin())(exp()exp((),( kyDkyCkxBkxAyx 

                                  (3) 

The constants A, B, C and D are the 

amplitudes of the potential function and all 

of them are to be computed from boundary 

conditions and ‘k’ is a function of integer. 

As the solution is a generalized solution 

for BOX region, it is applicable to all the 

three regions with different constant values 

and with same ‘k’ factor.  

 

Region 1; 

In region Reg.1, 2-D potential function is 

denoted by 1(x,y) and the solution can be 

written as 

))cos()sin())(exp()exp((),( 11111 kyDkyCkxBkxAyx 

                                    (4) 

The constants A1, B1, C1 and D1 can be 

determined from the following boundary 

conditions: 

(a) 1=0 at (x=-∞,y), since at infinity 

potential is zero. 

(b) 1=0 at (x, y=tSi ), since source is at 

zero bias.  

(c) 1=" at (x,y=tbox+tSi), since potential 

at BOX-substrate interface is ".  

(d) 1=V1 at (x=-L/2, y), since potential at 

the virtual plane P1 is V1. 

Since there is no accumulation, depletion 

or inversion of charge in the substrate, the 

p-type substrate is assumed to act like a 

contact. For high doping, thick substrate 

and low substrate bias this assumption is 

valid and is important to avoid the 

extension of present 2D analysis in the 

substrate region. The BOX-substrate 

interface potential is taken to be equal to 

Sub

sub

t

rV
  where Vsub is the substrate bias 

and ‘r’ is fitting parameter representing the 

resistance effect of the substrate.  

 

Applying the first boundary condition, we 

get     

0))cos()sin()(exp( 111  kyDkyCB k                                                                              

(5) 

The second multiplying term can not be 

zero hence B1=0.           

Eqn. 4 can now be written as  

))cos()sin())((exp(),( 11111 kyDkyCkxyx 

                                                                  

(6) 

where C11=A1C1 and D11=A1D1. 

Applying the second boundary condition, 

we get 

0))cos()sin()(exp( 1111  SiSi ktDktCkx                                                                            

(7) 

Applying the third boundary condition in 

eqn.6, we get 

  ))}(cos())(sin(){exp( 1111 boxSiboxSi ttkDttkCkx

                                                 (8) 

Multiplying eqn. 7 with sin(k(tSi+tbox)) and 

eqn. 8 with sin(ktSi), we obtain 
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Substituting this value in eqn. 7 we get 
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(10) 

Applying the fourth boundary condition in 

eqn. 6, we get 
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(11) 

Region 3; 

In region Reg.3, 2-D potential profile is 

denoted by 3(x,y) and the solution can be 

written as 

))cos()sin())(exp()exp((),( 33333 kyDkyCkxBkxAyx                                      

(12) 

The constants A3, B3, C3 and D3 can be 

determined from the following boundary 

conditions: 

(a) 3=0 at (x=+∞,y), since at infinity 

potential is zero. 

(b) 3=Vds at (x,y=tSi ),Vds is drain bias.  

(c) 3=" at (x,y=tbox+tSi), since potential 

at substrate and oxide interface is ". 

(d) 3=V2 at (x=+L/2, y), since potential 

at the virtual plane P2 is V2. 

Adopting similar approach as in Reg. 1, 

potential at the virtual interface P2 can be 

written as
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Region 2; 

In region Reg.2,  2-D potential profile is denoted by 2(x,y) and the solution can be written 

as 

))cos()sin())(exp()exp((),( 22222 kyDkyCkxBkxAyx                                      (14) 

The constants A2, B2, C2 and D2 can be solved from the following boundary conditions:  

(a) 2= V1 at (x=-L/2,y), since potential at the virtual plane P1 is V1. 

(b) 2=' at (x,y=tSi ), since potential at channel and buried oxide interface is '.  

(c) 3=V2 at (x=+L/2, y), since potential at the virtual plane P2 is V2. 

(d) 3=" at (x,y=tbox+tSi), since potential at substrate and buried oxide interface is ". 

Four equations can be formulated on the basis of four boundary conditions stated above. 

 

12222 ))cos()sin())(2/exp()2/exp(( VkyDkyCkLBkLA                                       (15) 

  ))cos()sin())(exp()exp(( 2222 SiSi ktDktCkxBkxA                                          (16) 

22222 ))cos()sin())(2/exp()2/exp(( VkyDkyCkLBkLA                                      (17) 
''

2222 )))(cos())(sin())(exp()exp((  boxSiboxSi ttkDttkCkxBkxA                  (18) 

There are six unknowns (A2,B2,C2,D2, and k) ; therefore we need another two boundary 

conditions to formulate a set of six equations. To derive the two boundary conditions we used 

the following idea from Gauss theorem [14] 

m

s

bellowabove EE
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
                                                                                                        (19) 
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where, Eabove and Ebellow are the electric field just bellow and above a plane or surface, s is 

the charge density on that surface and m is the dielectric constant of the medium below the 

surface. Applying this on the planes P1 and P2, the following two boundary conditions are 

obtained 
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Using equations 15, 16, 17, 18, 20 and 21, the 2-D potential profile in the BOX region as well 

as the value of ‘k’ are derived as; 
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The final expression of the potential profile in the BOX region is given as 


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LxkkVLxkkV
yx                   (24) 

Back interface potential  can be calculated from Eq. 24 with y=tSi and electric field can be 

computed by taking the derivative of  with respective to x.  

 

RESULTS AND DISCUSSION  

In the present work two-dimensional 

potential profile in the buried oxide region 

has been extensively studied for SOI 

MOSFET structure. We have considered a 

fully depleted SOI MOSFET structure 

with negligible buried oxide trap charge 

density, zero source bias and a highly 

doped substrate region. Material 

parameters used for simulation are given 

in the Table. 1. Through out the simulation 

channel length is considered to be 50nm. 

 

Table 1: Parameter values used for 

simulation 
Parameters Value 

NA 10
21 

m
-3 

NSUB 10
21

m
-3 

NS-D 10
26

m
-3 

tSi 20nm 

tf 5nm 

tbox 100nm 

tsub 200nm 
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Fig. 2. Two-dimensional potential profile in the BL region for Vsub = 1V and Vds= 1V. 

Symbols a, b, c, d, e, f, g and h are boundary positions of BL region as shown in the Fig. 1. 

 

 
Fig. 3: Three-dimensional view of the potential surface in the BL region. Channel is from 

30nm to 80nm (point b to c) along the x coordinate and BL is from 0 to 100nm along y 

coordinate (point a to e). 

 

The two-dimensional potential profile in 

the BL region for Vsub = 1V and Vds= 1V 

is shown in Fig. 2. The three-dimensional 

view of the potential profile in the BL 

region which is obtained by rotating the 

two-dimensional potential profile is shown 
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in Fig. 3. It is clear from Fig.2 that 

potential has its maximum value at point 

‘d’ (right topmost corner) and its minimum 

value at point ‘e’ (left bottom most corner) 

and in other region the value of potential 

changes according to the combined 

influence of drain and substrate biases. 

The potential decreases as we go from 

channel-BOX interface to BOX-substrate 

interface and also from the drain to source 

side. This potential variation represented 

as a three-dimensional plane is shown in 

Fig. 3. The value of potential at a specific 

position depends on combined effect of 

fringing field initiated from drain bias and 

the substrate field.  

 

 
Fig. 4. Potential along the channel back interface (at y=tSi) for Vsub = 1V and Vds:0.5V, 1V 

and 1.5V respectively (↑). 

 

 
Fig. 5. Electric field along the channel back interface. Symbols and parameters are the same 

as in Fig. 4. 

 

The potential and the electric field at the 

channel back interface are shown in Figs. 

4 and 5, respectively. The potential and the 

field due to the substrate bias are same 
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throughout the channel back interface but 

higher fringing field effect at the vicinity 

of the drain region is responsible for 

upward shift of the potential and electric 

field as we proceed from the source to the 

drain side. 

 

 
Fig. 6. Potential along y-axis in the buried layer at the middle of the channel (x=0) for Vds of 

1V and Vsub:1V, 3V and 6V respectively (↑). 

 

 
Fig. 7. Potential along y-axis in the buried layer at the middle of the channel (x=0) for Vsub of 

1V and Vds: 0.5V, 1V and 1.5V respectively (↑). 

 

Potential along y-axis in the buried layer at 

the middle of the channel for different 

substrate and drain biases are plotted in 

Figs. 8 and 9, respectively. With the 

increase of the substrate bias, BOX-

substrate interface potential () increases 

as a result channel back interface potential 

() also increases. Enhanced  due to 

higher Vsub is responsible for initiating a 

parabolic nature in the potential profile 

shown in Fig. 8. Enhanced drain bias is 

responsible for higher channel back 

interface potential due to increased 

fringing field effect as shown in Fig. 9. It 

is also clear from these plots that fringing 

field effect on channel back interface 

potential is much more pronounced than 
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the substrate field effect in such low 

dimension.     

 

CONCLUSION  

An analytical model of 2D potential 

profile in the buried oxide layer of SOI 

MOSFET has been developed by solving 

2D Poisson’s equation. Enhanced channel-

back interface potential is responsible for 

initiating higher short channel effect and 

our model was able to effectively analyze 

the channel back interface potential. 

Higher substrate and drain biases enhance 

the potentials at the channel-back interface 

or the top region of the buried layer 

thereby increasing the short channel 

effects. The proposed model is a 

generalized model and it can be adopted 

for other similar MOS. Although the 

present analytical model was intentionally 

restricted to potential analysis in the buried 

layer, this analytical model can be used 

with well established 2D analytical model 

in the channel region to develop a 

complete 2D potential model throughout 

the device. Total 2D potential model can 

be used for performance analysis of short 

channel SOI MOSFET for future 

applications.   
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