Plant Secondary Metabolites: Comprehensive Source of Plant Medicines
Abstract
Therapeutic plants, are known to deliver a wide scope of plant optional metabolites (PSMs) connected as bug sprays, medications, colors and poisons in farming, prescription, industry and bio-fighting in addition to bio-fear based oppression, separately. Be that as it may, generation of PSMs is more often than not in little amounts, so we have to discover novel approaches to increment both amount and nature of them. Luckily, biotechnology recommends a few choices through which optional digestion in plants can be designed in inventive approaches to: 1) over-produce the helpful metabolites, 2) down-produce the dangerous metabolites, 3) produce the new metabolites. Auxiliary metabolites are comprehensively characterized as normal items incorporated by a living being that are not basic to help development and life. The plant kingdom fabricates more than 200,000 particular concoction mixes, the greater part of which emerge from specific digestion. While these mixes assume imperative jobs in interspecies challenge and protection, many plant characteristic items have been abused for use as meds, scents, flavors, supplements, repellants, and colorants. In spite of this immense synthetic decent variety, numerous auxiliary metabolites are available at low focuses in plant, dispensing with yield-based assembling as a method for achieving these essential items. The basic and stereo chemical intricacy of particular metabolites frustrates most endeavors to get to these mixes utilizing substance combination. Albeit local plants can be designed to aggregate target pathway metabolites. This Update gives a concise outline of designing plant auxiliary digestion in microbial frameworks. We briefly outline biosynthetic pathways mediating formation of the major classes of natural products with an emphasis on high-value terpenoids, alkaloids, phenylpropanoids, and polyketides. We also highlight common themes, strategies, and challenges underlying efforts to reconstruct and engineer these pathways in microbial hosts. We focus chiefly on de novo biosynthetic approaches in which plant specialized metabolites are synthesized directly from sugar feed stocks rather than supplemented precursors or intermediates.
Full Text:
PDFReferences
Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future. Science 16 Sep 2016: Vol. 353, Issue 6305, pp. 1232-1236. DOI: 10.1126/science.aad2062
Singh B, Sharma RA. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech. 2014;5(2):129-151.
Bohlmann J, Keeling CI. Terpenoid biomaterials. Plant J. 2008 May;54(4):656-69. doi: 10.1111/j.1365-313X.2008.03449.x. PubMed PMID: 18476870.
Jiang Z, Kempinski C, Chappell J. Extraction and Analysis of Terpenes/Terpenoids. Curr Protoc Plant Biol. 2016;1:345-358. Epub 2016 Jun 10. PubMed PMID: 27868090; PubMed Central PMCID: PMC5113832.
Web wikidiff.com. Sesquiterpene vs Monoterpene - What's the difference?
Web beneforce.com. Monoterpenes Information
Bayala B, Bassole IH, Scifo R, Gnoula C, Morel L, Lobaccaro JM, Simpore J. Anticancer activity of essential oils and their chemical components - a review. Am J Cancer Res. 2014 Nov 19;4(6):591-607. eCollection 2014. Review. PubMed PMID: 25520854; PubMed Central PMCID: PMC4266698.
St-Gelais A. Published Paper: Interesting and Rare Compounds from Bolivian Molle. Laboratoire PhytoChemia, 11 July 2015.
Garcia R, Alves ES, Santos MP, Aquije GM, Fernandes AA, Dos Santos RB, Ventura JA, Fernandes PM. Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Braz J Microbiol. 2008 Jan;39(1):163-8. doi: 10.1590/S1517-838220080001000032. Epub 2008 Mar 1. PubMed PMID: 24031197; PubMed Central PMCID: PMC3768356.
Buckle J. Chapter 2. Basic Plant Taxonomy, Basic Essential Oil Chemistry, Extraction, Biosynthesis, and Analysis. In: Jane Buckle PhD RN. Clinical Aromatherapy: Essential Oils in Healthcare 3rd Edition, published by Churchill Livingstone, December 24, 2014
Web beneforce.com. Sesquiterpenes in Oils Information.
Zerbe P. Modularity of terpenoid metabolism fuels plant's chemical diversity. Web Zerbe lab
Vattekkatte A, Garms S, Brandt W, Boland W. Enhanced structural diversity in terpenoid biosynthesis: enzymes, substrates and cofactors. Org Biomol Chem. 2018 Jan 17; 16(3):348-362. doi: 10.1039/c7ob02040f. Review. PubMed PMID: 29296983.
Cho KS, Lim YR, Lee K, Lee J, Lee JH, Lee IS. Terpenes from Forests and Human Health. Toxicol Res. 2017 Apr;33(2):97-106. doi: 10.5487/TR.2017.33.2.097. Epub 2017 Apr 15. Review. PubMed PMID: 28443180; PubMed Central PMCID: PMC5402865.
Aati H, El-Gamal A, Kayser O. Chemical composition and biological activity of the essential oil from the root of Jatropha pelargoniifolia Courb. native to Saudi Arabia. Saudi Pharm J. 2019 Jan;27(1):88-95. doi: 10.1016/j.jsps.2018.09.001. Epub 2018 Sep 11. PubMed PMID: 30662311; PubMed Central PMCID: PMC6323148.
Okoh O., Sadimenko A., Afolayan A. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010;120:308–312. doi: 10.1016/j.foodchem.2009.09.084
Andrade MA, Cardoso Md, Gomes Mde S, de Azeredo CM, Batista LR, Soares MJ, Rodrigues LM, Figueiredo AC. Biological activity of the essential oils from Cinnamodendron dinisii and Siparuna guianensis. Braz J Microbiol. 2015 Mar 1;46(1):189-94. doi: 10.1590/S1517-838246120130683. eCollection 2015 Mar. PubMed PMID: 26221107; PubMed Central PMCID: PMC4512063.
Zárybnický T, Boušová I, Ambrož M, Skálová L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch Toxicol. 2018 Jan;92(1):1-13. doi: 10.1007/s00204-017-2062-2. Epub 2017 Sep 13. Review. PubMed PMID: 28905185.
Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol. 2010 Feb;152(2):639-55. doi: 10.1104/pp.109.144691. Epub 2009 Nov 25. PubMed PMID: 19939949; PubMed Central PMCID: PMC2815902.
Toyomasu T, Sassa T. Comprehensive Natural Products II. Chemistry and Biology In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Volume 1, 2010, Pages 643-672
Lanzotti V. (2013) Diterpenes for Therapeutic Use. In: Ramawat K., Mérillon JM. (eds) Natural Products. Springer, Berlin, Heidelberg DOI https://doi.org/10.1007/978-3-642-22144-6_192. Print ISBN 978-3-642-22143-9, Online ISBN 978-3-642-22144-6
Perveen S. Introductory Chapter: Terpenes and Terpenoids. In: Shagufta Perveen. Terpenes and Terpenoids. Intechopen DOI: 10.5772/intechopen.79683.
Web Educalingo. Sesquiterpene (2019). Available hFrom: https://educalingo.com/en/dic-en/sesquiterpene
Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013 Jun 19;14(6):12780-805. doi: 10.3390/ijms140612780. Review. PubMed PMID: 23783276; PubMed Central PMCID: PMC3709812.
Amorim MH, Gil da Costa RM, Lopes C, Bastos MM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol. 2013 Aug;43(7):559-79. doi: 10.3109/10408444.2013.813905. Review. PubMed PMID: 23875764.
Yan J, Guo J, Yuan W, Mai W, Hong K. Chapter Fifteen - Identification of Enzymes Involved in Sesterterpene Biosynthesis in Marine Fungi. In: Moore BS. Methods in Enzymology Volume 604, 2018, Pages 441-498, DOI: https://doi.org/10.1016/bs.mie.2018.04.023
Qi SH, Ma X. Antifouling Compounds from Marine Invertebrates. Mar Drugs. 2017 Aug 28;15(9). pii: E263. doi: 10.3390/md15090263. Review. PubMed PMID: 28846623; PubMed Central PMCID: PMC5618402.
Brill ZG, Grover HK, Maimone TJ. Enantioselective synthesis of an ophiobolin sesterterpene via a programmed radical cascade. Science. 2016 May 27;352(6289):1078-82. doi: 10.1126/science.aaf6742. PubMed PMID: 27230373; PubMed Central PMCID: PMC5319821.
Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E6005-E6014. doi: 10.1073/pnas.1705567114. Epub 2017 Jul 3. PubMed PMID: 28673978; PubMed Central PMCID: PMC5530694.
Nitzschia closterium classification essay. Web http://essaycheap793.web.fc2.com, January 18, 2017
Zhang C, Liu Y. Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med. 2015 Jul;69(3):255-66. doi: 10.1007/s11418-015-0911-y. Epub 2015 Apr 19. Review. PubMed PMID: 25894074; PubMed Central PMCID: PMC4506451.
Tian W, Deng Z, Hong K. The Biological Activities of Sesterterpenoid-Type Ophiobolins. Mar Drugs. 2017 Jul 18;15(7). pii: E229. doi: 10.3390/md15070229. Review. PubMed PMID: 28718836; PubMed Central PMCID: PMC5532671.
Krisztina Krizsán, Ottó Bencsik, Ildikó Nyilasi, László Galgóczy, Csaba Vágvölgyi, Tamás Papp; Effect of the sesterterpene-type metabolites, ophiobolins A and B, on zygomycetes fungi, FEMS Microbiology Letters, Volume 313, Issue 2, 1 December 2010, Pages 135–140, https://doi.org/10.1111/j.1574-6968.2010.02138.x
Chudzik M, Korzonek-Szlacheta I, Król W. Triterpenes as potentially cytotoxic compounds. Molecules. 2015 Jan 19;20(1):1610-25. doi: 10.3390/molecules20011610. Review. PubMed PMID: 25608043; PubMed Central PMCID: PMC6272502.
Feng L, Liu X, Zhu W, Guo F, Wu Y, Wang R, Chen K, Huang C, Li Y. Inhibition of human neutrophil elastase by pentacyclic triterpenes. PLoS One. 2013 Dec 20;8(12):e82794. doi: 10.1371/journal.pone.0082794. eCollection 2013. PubMed PMID: 24376583; PubMed Central PMCID: PMC3869726.
Refbacks
- There are currently no refbacks.