

1 Page 1-6 © MAT Journals 2016. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 1 Issue 3

NoSQL Storage Systems – A Review

Anika Gupta

Department of Computer Science and Engineering, Punjab Technical University, Jalandhar, India

E-mail: anika.mit90@yahoo.com

Abstract

NoSQL systems have fully grown in quality for storing massive information as a result of

these systems supply high convenience, i.e., operations with high output and low latency.

However, information in these systems square measure handled these days in ad-hoc ways

that. We have a tendency to gift Wasef, a system that treats information in a very NoSQL

information system, as excellent voters. Information might embrace data such as:

operational history for an information table (e.g., columns), placement data for ranges of

keys, and operational logs for information things (key-value pairs). Wasef permits the

NoSQL system to store and question this information with efficiency. We have a tendency

to integrate Wasef into Apache Cassandra, one among the foremost widespread key-value

stores.

Keywords: NoSQL, Wasef, information, cassandra

INTRODUCTION

With the arrival of NoSQL stores, giant

corpuses of knowledge will currently be

kept in an exceedingly highly-available

manner. Access to the present keep

knowledge is usually via CRUD

operations, i.e., Create, Read, Update,

and Delete. NoSQL storage systems

offer high outturn and low latency for

such operations. As an example

prophetess calls these tables as “column

families”, whereas, MongoDB calls

them as “collections”. Every table

consists of a group of rows, wherever,

every row may be a key-value try or

equivalently an information item. Every

row is known by a singular key. In

contrast to relative databases, NoSQL

systems enable schema-free tables so an

information item might have a variable

set of columns (i.e., attributes). Access

to those knowledge things is allowed

via CRUD operations, either

mistreatment the first key or alternative

2 Page 1-6 © MAT Journals 2016. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 1 Issue 3

attributes of the info things. We argue

that such data has to be collected,

stored, accessed, and updated during an

excellent manner [1, 2]. We have a

tendency to decision this data as

information. For the needs of NoSQL

systems, we have a tendency to outline

information as essential data a couple of

information item, a table, or the whole

storage system, however, excluding the

information hold on within the data

things themselves. This includes

structural information that is relevant to

the approach tables square measure

organized, body information wont to

manage system resources, and

descriptive information concerning

individual information things.

Our work makes the following

contributions:

• We present the design and architecture

of Wasef, a meta-data management

system for NoSQL storage systems.

• We implement the W-Cassandra system,

a key-value store consisting of Wasef

integrated into Apache Cassandra 1.2.

SYSTEM DESIGN

Design Principles

Wasef’s design is based on four guiding

principles:

Modularity and Integration with the

Existing Functionality

The metadata system should modularly

integrate with the underlying

infrastructure. It should not affect existing

NoSQL APIs, functionality, or

performance [3].

Flexible Granularity of Collected

Metadata

The design ought to be versatile to gather

and store data regarding objects and

operations totally different sorts and at

different granularities (e.g., knowledge

things vs. tables). Such data includes (but

is not basically restricted to) the time and

outline of performed operations, object

names, possession info, and column info

[4, 5].

Accessibility of Metadata by Internal and

External Clients

Metadata needs to be accessible by both

external clients (e.g., for data provenance)

as well as servers internal to the cluster

(e.g., for management operations such as

dropping of columns). We provide this via

flexible APIs to collect, access, and

manipulate metadata.

Minimal Collection of the Metadata

Due to the big size of information and

operations handled by NoSQL data stores,

3 Page 1-6 © MAT Journals 2016. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 1 Issue 3

the continual assortment of data

concerning each operation would possibly

impose an outsized overhead on the

system. To avoid this, Wasef permits the

administrator to assemble data assortment

for less than a specific set of operations.

Architectural Components

Wasef consists of five major components:

Registry

The written account could be a table for

registering objects for which data are

going to be collected. Every written

account entry is known by 2 attributes: i)

name of the target object (e.g., table, row,

or cluster node), ii) name of the

operation(s) that may trigger data

assortment concerning the target object

(e.g., table truncation, row insertion, or

node decommissioning). NoSQL systems

like Cassandra typically provide a kind of

table known as “system tables”. As these

tables area unit persistent and simply

accessible at servers, we have a tendency

to store the written account as a system

table [6, 7].

Log

The Log is a table where collected

metadata is Wasef Metadata Storage

Wasef collects and stores information by

victimisation 2 forms of tables, in a very

means that gives low browse latency and

versatile querying. Whereas, implementing

these techniques, we tend to use

underlying prophetess tables. This permits

Wasef to inherit Cassandra’s existing

practicality like information compression,

caching, quick access, and replication

factors. Concretely, we tend to store all

information tables as Cassandra’s system

tables, and collect them within the

system_metadata system keyspace.

Victimisation system tables provide a

read-only protection for the information

schema, and make it obtainable right away

when the system is bootstrapped. The

written record table consists of 2 fields:

The target field stores the name of the

information target object, and also the

operation field stores the operation name

which can trigger the information

assortment. The Log table has many fields

that describe collected information. These

embody the target, the operation, and also

the timestamp of the operation (i.e., time).

The consumer field reports the possession

data of the information target [9].

stored. Unlike a flat file format, a table-

formatted storage allows easy querying.

Like the Registry, we store the Log as our

second system table.

4 Page 1-6 © MAT Journals 2016. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 1 Issue 3

Core Logic and Internal API

Wasef logic is enforced as a skinny

wrapper layer round the written account

and Log. To facilitate economical

information operations, it is integrated

with the underlying NoSQL system.

Finally, it exposes associate degree API

for internal information store parts.

System Hooks

The System Hooks component contains

implementations dependent on the

underlying data store. It monitors data

store operations (e.g., schema

modification, data manipulation, etc.),

and calls the Core Logic to log the

metadata into the Log table [8].

Client (External) API

The consumer API could be a set of

functions exposed to external shoppers

(and users) permitting them to register

objects and operations for data

assortment.

The primary keys for these tables are

carefully chosen to achieve two goals:

Optimizing the Storage Layout for Low

Read Latency

The target key works as the partitioning

key for both tables while the clustering

keys are joined using a fixed scheme of

delimiters. Grouping the metadata related

to one target within the same row orders

the fields lexicographically and ensures

they reside in the same Cassandra node,

which leads to faster reading. Every

column in that row represents one

operation. Using this layout, performing a

select query that asks about all the

operations related to one target is as fast as

querying about one operation.

Flexible Querying of the Log Table

 In CQL, the where clause of the select

statement filters only based on the table

primary key. Thus, including more fields

in the primary key increases querying

flexibility.

Optimizing Metadata Collection

Each incoming operation is validated

against the meta-data Registry. This is the

sole overhead entailed for operations that

do not have a corresponding registry entry.

In case of a matching registry entry,

appropriate writes are entered into the Log.

To address the overhead of metadata

collection for fine-grained metadata targets

such as writes for a data item, we optimize

both registry validation and log writing.

 Enabling Dynamic Snitching

We change dynamic snitching, that

permits the Cassandra arranger to send

scan requests to replicas that square

5 Page 1-6 © MAT Journals 2016. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 1 Issue 3

measure the nearest in round-trip time

from the arranger supported history.

 Setting Read Consistency Level to any

for the Registry Table

This consistency level is quicker than

ONE, and it permits the arranger to

acknowledge the consumer once either

storing it regionally or receiving the

primary duplicate acknowledgement,

whichever happens earlier. This conjointly

reduces the network traffic.

 Enabling Row Caching

When row caching is enabled, Cassandra

stores new entries in an exceedingly cache

related to the destination table. Thus,

Cassandra will serve scan operations from

the cache to shorten the scan path.

Experimental Evaluation

We answer the following questions:

1) What is the performance cost of

integrating metadata collection and

querying into Cassandra? This includes

read and write latencies, and the overall

throughput, for W-Cassandra.

2) How does W-Cassandra scale with

cluster size, size of data, size of

metadata, and query injection rate?

3) How does W-Cassandra perform for the

use case scenarios?

Scalability with Data Size

As the metadata size is increased from

0.08% to 8% of data size, the increase in

update latencies, while provenance is

being collected, is generally very small.

The observation is similar for read

latencies. Independent of its size, this

metadata is in fact replicated across

multiple servers, thus allowing it to scale

with data size. Finally, we note that Wasef

is memory-bound rather than disk-bound

because Cassandra is too. A disk-bound

Cassandra would be very slow, and would

lead the administrator to add more servers,

making it, and thus Wasef, memory-bound

again.

Verifying Node Decommissioning

The main overhead faced by the system

administrator during node

decommissioning is the first stage when

token metadata is collected; thereafter the

data streaming to other servers is

automated. To measure the overhead of the

first stage, we vary the number of tokens

per node. We use four AWS EC2

instances, and a 4 GB data set size.

CONCLUSION

We presented a metadata system for

NoSQL data stores, called Wasef. We

integrated Wasef into Cassandra. We

showed how our system, called W-

Cassandra, can be used to correctly and

flexibly provide features like column drop,

6 Page 1-6 © MAT Journals 2016. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 1 Issue 3

node decommissioning, and data

provenance. Our experi-ments showed that

our system imposes low overhead on

Cassandra throughput of 9% and update

latency of 15%. We also showed that our

system scales well with cluster size,

incoming workload, data size, and

metadata size. We believe that Wasef

opens the door to treating metadata as

first-class citizens in NoSQL systems, and

exploring the myriad forms of metadata

that abide in this new class of data stores.

REFERENCES

1. A. Lakshman, P. Malik. Cassandra: A

decentralized structured storage

system. ACM SIGOPS Operating

Systems Review. 2010; 44(2): 35–40p.

2. Available at:

https://www.mongodb.org/.

3. F. Chang, J. Dean, S. Ghemawat, et

al. Bigtable: A distributed storage

system for structured data. ACM

Transactions on Computer Systems

(TOCS). 2008; 26(2): 4p.

4. “Amazon Web Services (AWS),”

http://aws.amazon.com/.

5. B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, R. Sears.

Benchmarking cloud serving systems

with YCSB. In the First Symposium on

Cloud Computing. 2010; 143–154p.

6. “CQL for Cassandra 1.2,”

http://www.datastax.com/documentatio

n/ cql/3.0/cql/aboutCQL.html.

7. M. Welsh, D. Culler, E. Brewer.

SEDA: An architecture for well-

conditioned, scalable internet services.

In Operating Systems Review. 2001;

35(5): 230–243p.

8. “CASSANDRA-3919 JIRA Issue,”

https://issues.apache.org/jira/

browse/CASSANDRA-3919.

9. “Slightly Remarkable Blog, Removing

Nodes from a Cassandra Ring,”

http://slightlyremarkable.com/post/578

52577144/removing-nodes-from-a-

cassandra-ring.

