

1 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

3D Game: Innovating India

Mandar Deulkar, Vedika Basarkar, Mrudula Bangale
Computer Science and Engineering Department, Dr Babasaheb Ambedkar Marathwada University

Aurangabad-431001, India

deulkarm@gmail.com , vedika.basarkar30@gmail.com ,mrudula5.bangale@gmail.com

Abstract

This document gives information about 3D game using Unity game engine and Autodesk

maya. This game is totally strategy game. Build your village, gathering of resources and

utilize them, earn some money and spend that money on to the development of the village to

convert it in to smart city.

Keyword: 3D Game, Assets, Scenes

INTRODUCTION

The basic development of any country

starts from its basic and small structural

development; we call it as initial stage as

village and the highest improved stage

called as Smart city. If your villages are

enough stronger to hold basic needs for

society then it will automatically possess

potential to develop itself up to smart city.

India have emerging market, growing

economy, enormous projects but still our

villages are filled with poverty, lack of

resource availability, lack of employment

etc. which results in migration of people

towards city. This is a Strategic game. We

will provide a piece of land to player i.e., a

village. Player has to develop that piece of

land into a smart city using resources and

man power. Player has to build village,

train population, gathering of resources

and utilize them, earn money and spend it

on the development of village. Player will

face real time problems.

3D ASSETS IN MAYA

Add a collection of nodes to a specialized

Maya asset node for ease of scene

management. Assets are particularly useful

for streamlining and maintaining

workflows while simultaneously allowing

the scene author to securely control what

aspects of the scene particular artists are

allowed to modify.

Some of the things you can do with assets

are

 Hide internal non-published s nodes by

making the asset a black.

 Pre-plan the organization and attributes

of a scene.

 Customize the attributes displayed in

the Channel Box and Attribute Editor.

 Lock attributes from being.

 Organize nodes together by function

without any effect on performance.

 Substitute parts of your model with

other parts while maintaining behavior

and animation.

 Reference assets from external files

and display them in your scene as

proxies.

Nodes contained in an asset are

called encapsulated nodes.

With assets you can create templates to

plan and organize the capabilities and

attributes of various parts of the scene

before you actually build them. You can

also set up assets and publish attributes as

you create your geometry and then save a

template based on that for future scenes.

Either of these methods can be used to set

the expectations for future artists working

on the asset.

As an example of process management, a

rigger working on a character can create an

asset with an interface of attributes needed

for animation. When the model is sent

mailto:deulkarm@gmail.com
mailto:vedika.basarkar30@gmail.com
mailto:mrudula5.bangale@gmail.com

2 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

down the pipeline, the animator only sees

the attributes that are key able and exposed

for the animation department. This

simplified subset of attributes prevents the

animator from having to search through

(and possibly modify) long lists of non-

animation attributes.

Assets are also useful when parts of the

model need to be swapped in and out. For

example, multiple versions of arms and

legs for a robot can be stored in their own

files and referenced into a scene using

assets without breaking existing

hierarchies and animation.

PARTS OF ASSETS

While asset nodes themselves do not

appear in the scene view, they do appear in

many editors. Additionally, if you select

an object encapsulated by an asset in the

scene view, the asset is displayed in

the Attribute Editor / Channel Box along

with their published attributes.

Fig1. Atribute Editor And Channel Box

Assets appear in the Hypergraph

Connections editor as nodes with beveled

edges. If you expand one of these nodes

you can see a number of parts:

WORKING WITH ASSETS

When you create an asset, Maya arranges

the nodes in a number of ways:

 In the Hypergraph Connections editor,

all the internal nodes encapsulated by

that asset appear as a single node with

rounded borders.

 In the Outliner, all the internal nodes

encapsulated by the asset appear under

a new asset node.

 A corresponding entry appears in

the Channel Box above

the Inputs and Outputs.

Types of Assets
In Maya there are two types of assets, and

you can interact with each one in different

ways.

Asset with transform are assets that have

transform properties and can be

manipulated in the scene like a group

node. You can also parent assets in the

DAG hierarchy like any other node. Any

node parented to an asset with a transform

is automatically placed inside it.

Assets with transform are simpler and

allow direct manipulation and thus are

most appropriate for nodes that need to be

placed in the scene or the DAG hierarchy

(for example, geometry or groups).

Advanced assets do not have an

associated transform. These assets are not

part of the DAG

Hierarchy and the assets themselves

cannot be parented in the hierarchy.

However, internal nodes can be published

as anchors and placed in the DAG

hierarchy if necessary.

Advanced assets are most appropriate for

collections of nodes that do not need to

interact much with the DAG hierarchy, or

for collections of nodes that are not in the

same DAG hierarchy.

In both cases, you add and modify

attributes and make attribute connections

to asset nodes (and the nodes placed within

3 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

them) just like you would other nodes in

Maya.

EXPORT SCENE TO UNITY

To export the scene to your Unity project

1. Select File > Send to Unity > Set Unity

Project, then browse to select a valid,

local Unity project (the project

directory) and click Select.

(You need to set the project only once.

It's not necessary to set the project

again for subsequent export

operations.)

2. Select File > Send to Unity, then

select All (to export the whole scene)

or Selection (to export only selected

objects).

3. In the Export Selection window that

appears, enter a name to save the

selection as a FBX file in your Unity

project's Assets folder (default) and

then click Export Selection.

Maya exports the selected objects or the

entire scene to your Unity project. If you

have the project open in Unity, you can

access the FBX file immediately. To see it

in your Unity scene, drag and drop the file

from the Assets folder in the Project

Browser into the Scene view.

IMPORT SCENE TO UNITY

Unity natively imports Maya Files. To get

started, simply place your .mb or .ma file

in your projects file folder. When you

switch back to unity your objects is

imported in unity and will show up in our

main project View.

Unity currently imports from Maya:

 We imported with all nodes, positions,

and rotations of scale.

 We imported all meshes with vertex

colors, normal with and upto two UV

sets.

 We can also imported materials with

all textures and diffuse colors and

multiple colors with mesh.

 Animations with FK & IK.

 Bone-Based Animation.

 Blend shapes.

CREATING GAMEPLAY

There are a handful of basic workflow

concepts needed to learn in unity. Once

you understood, you will find yourself

making games in no time. This section

explain the core concepts you need to

know for creating unique and amazing

gameplay .The majority of concepts

required you to write scripts.

1. SCENES: Scenes contain the objects of

your game. They can be used to create

main menu, individual levels and anything

else. Think of each unique scene file as

unique level. In each scene, you may place

your environments, obstacles and

decorations, essentially designed and build

scenes.

Fig2. Basic View Of Scene In Unity

When we created our 1
st
 Scene that time

scene was empty expect for default

objects- either and orthographic camera, or

perspective camera and directional light,

depending on whether we started the

project in 2D or 3D.

GAME OBJECTS

Every object in your game is game object.

This means that everything you can think

of to be in your game has to be a game

object. However, a Game object can’t do

anything on its own; you have to give it

properties before it can become a

character, an environment, or special

effect.

4 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

A Game Object is a container; you add

pieces to the Game Object container to

make it into a character, a light, a tree, a

sound, or whatever else you would like it

to be. Each piece you add is called

a component.

Creating and Using Scripts

The behavior of GameObjects is controlled

by the Components that are attached to

them. Although Unity’s built-in

Components can be very versatile, you

will soon find you need to go beyond what

they can provide to implement your own

gameplay features. Unity allows you to

create your own Components

using scripts. These allow you to trigger

game events, modify Component

properties over time and respond to user

input in any way you like.

Unity supports two programming

languages natively:

 C# (pronounced C-sharp), an

industry-standard language similar to

Java or C++;

 UnityScript, a language designed

specifically for use with Unity and

modelled after JavaScript;

In addition to these, many other .NET

languages can be used with Unity if

they can compile a compatible DLL.

Creating Scripts

Unlike most other assets, scripts are

usually created within Unity directly. You

can create a new script from the Create

menu at the top left of the Project panel or

by selecting Assets > Create > C#

Script (or JavaScript) from the main

menu.

The new script will be created in

whichever folder you have selected in the

Project panel. The new script file’s name

will be selected, prompting you to enter a

new name.

Fig3. Screenshot For Script Folder

Anatomy of a Script file

When you double-click a script asset in

Unity, it will be opened in a text editor. By

default, Unity will use MonoDevelop, but

you can select any editor you like from the

External Tools panel in Unity’s

preferences.

The initial contents of the file will look

something like this:

using UnityEngine;

using System.Collections;

public class MainPlayer : MonoBehaviour

{

 // Use this for initialization

 void Start () {

 }

 // Update is called once per frame

 void Update () {

 }

}

A script makes its connection with the

internal workings of Unity by

implementing a class which derives from

the built-in class called MonoBehavior.

You can think of a class as a kind of

blueprint for creating a new Component

type that can be attached to GameObjects.

Each time you attach a script component to

a GameObject, it creates a new instance of

the object defined by the blueprint. The

name of the class is taken from the name

you supplied when the file was created.

The class name and file name must be the

same to enable the script component to be

attached to a GameObject.

The main things to note, however, are the

two functions defined inside the class.

The Update function is the place to put

code that will handle the frame update for

5 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

the GameObject. This might include

movement, triggering actions and

responding to user input, basically

anything that needs to be handled over

time during gameplay. To enable the

Update function to do its work, it is often

useful to be able to set up variables, read

preferences and make connections with

other GameObjects before any game

action takes place. The Start function will

be called by Unity before gameplay begins

(i.e., before the Update function is called

for the first time) and is an ideal place to

do any initialization.

Note to experienced programmers: you

may be surprised that initialization of an

object is not done using a constructor

function. This is because the construction

of objects is handled by the editor and

does not take place at the start of gameplay

as you might expect. If you attempt to

define a constructor for a script

component, it will interfere with the

normal operation of Unity and can cause

major problems with the project.

A UnityScript script works a bit differently

to C# script:

#pragma strict

function Start () {

}

function Update () {

}

Here, the Start and Update functions have

the same meaning but the class is not

explicitly declared. The script itself is

assumed to define the class; it will

implicitly derive from MonoBehavior and

take its name from the filename of the

script asset.

Controlling a GameObject

As noted above, a script only defines a

blueprint for a Component and so none of

its code will be activated until an instance

of the script is attached to a GameObject.

You can attach a script by dragging the

script asset to a GameObject in the

hierarchy panel or to the inspector of the

GameObject that is currently selected.

There is also a Scripts submenu on the

Component menu which will contain all

the scripts available in the project,

including those you have created yourself.

The script instance looks much like any

other Component in the Inspector:

Once attached, the script will start working

when you press Play and run the game.

You can check this by adding the

following code in the Start function:-

// Use this for initialization

void Start () {

 Debug.Log("I am alive!");

}

Debug.Log is a simple command that just

prints a message to Unity’s console output.

If you press Play now, you should see the

message at the bottom of the main Unity

editor window and in the Console window

(menu: Window > Console).

MAIN FUNCTIONS IN GAME PLAY

CAMERAS

Cameras are the devices that capture and

display the world to the player. By

customizing and manipulating cameras,

you can make the presentation of your

game truly unique. You can have an

unlimited number of cameras in a scene.

They can be set to render in any order, at

any place on the screen, or only certain

parts of the screen.

6 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

Fig4. Basic Parameters For Camera

Properties

Property: Function:

Clear Flags Determines which parts

of the screen will be

cleared. This is handy

when using multiple

Cameras to draw

different game

elements.

Background The color applied to the

remaining screen after

all elements in view

have been drawn and

there is no skybox.

Culling Mask Includes or omits layers

of objects to be rendered

by the Camera. Assigns

layers to your objects in

the Inspector.

Projection Toggles the camera’s

capability to simulate

perspective.

 Perspecti

ve

Camera will render

objects with perspective

intact.

 Orthogra

phic

Camera will render

objects uniformly, with

no sense of

Property: Function:

perspective. NOTE: De

ferred rendering is not

supported in

Orthographic mode.

Forward rendering is

always used.

Size (when

Orthographic

is selected)

The viewport size of the

Camera when set to

Orthographic.

Field of

view (when

Perspective is

selected)

The width of the

Camera’s view angle,

measured in degrees

along the local Y axis.

Clipping

Planes

Distances from the

camera to start and stop

rendering.

 Near The closest point

relative to the camera

that drawing will occur.

 Far The furthest point

relative to the camera

that drawing will occur.

Viewport

Rect

Four values that indicate

where on the screen this

camera view will be

drawn. Measured in

Viewport Coordinates

(values 0–1).

 X The beginning

horizontal position that

the camera view will be

drawn.

 Y The beginning vertical

position that the camera

view will be drawn.

 W (Width

)

Width of the camera

output on the screen.

 H (Height

)

Height of the camera

output on the screen.

Depth The camera’s position

7 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

Property: Function:

in the draw order.

Cameras with a larger

value will be drawn on

top of cameras with a

smaller value.

Rendering

Path

Options for defining

what rendering methods

will be used by the

camera.

 Use

Player Settings

This camera will use

whichever Rendering

Path is set in the Player

Settings.

 Vertex Lit All objects rendered by

this camera will be

rendered as Vertex-Lit

objects.

 Forward All objects will be

rendered with one pass

per material.

 Deferred

Lighting

All objects will be

drawn once without

lighting, then lighting of

all objects will be

rendered together at the

end of the render

queue. NOTE: If the

camera’s projection

mode is set to

Orthographic, this value

is overridden, and the

camera will always use

Forward rendering.

Target

Texture

Reference to a Render

Texture that will contain

the output of the

Camera view. Setting

this reference will

disable this Camera’s

capability to render to

the screen.

HDR Enables High Dynamic

Property: Function:

Range rendering for this

camera.

Target

Display

Defines which external

device to render to.

Between 1 and 8.

Details

Cameras are essential for displaying your

game to the player. They can be

customized, scripted, or parented to

achieve just about any kind of effect

imaginable. For a puzzle game, you might

keep the Camera static for a full view of

the puzzle. For a first-person shooter, you

would parent the Camera to the player

character, and place it at the character’s

eye level. For a racing game, you’d

probably have the Camera follow your

player’s vehicle.

You can create multiple Cameras and

assign each one to a different Depth.

Cameras are drawn from low Depth to

high Depth. In other words, a Camera with

a Depth of 2 will be drawn on top of a

Camera with a depth of 1. You can adjust

the values of the Normalized View Port

Rectangle property to resize and position

the Camera’s view onscreen. This can

create multiple mini-views like missile

cams, map views, rear-view mirrors, etc.

Render path

Unity supports different rendering paths.

You should choose which one you use

depending on your game content and

target platform / hardware. Different

rendering paths have different features and

performance characteristics that mostly

affect lights and shadows. The rendering

path used by your project is chosen

in Player Settings. Additionally, you can

override it for each Camera.

https://docs.unity3d.com/Manual/class-RenderTexture.html
https://docs.unity3d.com/Manual/class-RenderTexture.html

8 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

Clear Flags

Each Camera stores color and depth

information when it renders its view. The

portions of the screen that are not drawn in

are empty, and will display the skybox by

default. When you are using multiple

Cameras, each one stores its own color and

depth information in buffers, accumulating

more data as each Camera renders. As any

particular Camera in your scene renders its

view, you can set the Clear Flags to clear

different collections of the buffer

information. To do this, choose one of the

following four options:

Skybox

This is the default setting. Any empty

portions of the screen will display the

current Camera’s skybox. If the current

Camera has no skybox set, it will default

to the skybox chosen in the Lighting

Window (menu: Window > Lighting). It

will then fall back to the Background

Color. Alternatively a Skybox

component can be added to the camera. If

you want to create a new Skybox, you can

use this guide.

Solid color

Any empty portions of the screen will

display the current Camera’s Background

Color.

Depth only

If you want to draw a player’s gun without

letting it get clipped inside the

environment, set one Camera at Depth 0

to draw the environment, and another

Camera at Depth 1 to draw the weapon

alone. Set the weapon Camera’s Clear

Flags to depth only. This will keep the

graphical display of the environment on

the screen, but discard all information

about where each object exists in 3-D

space. When the gun is drawn, the opaque

parts will completely cover anything

drawn, regardless of how close the gun is

to the wall.

AUDIO

Fig5. Screenshot For Audio Recording

Unity’s Audio features include full 3D

spatial sound, real-time mixing and

mastering, hierarchies of mixers,

snapshots, predefined effects and much

more.

Basic Theory

In real life, sounds are emitted by objects

and heard by listeners. The way a sound is

perceived depends on a number of factors.

A listener can tell roughly which direction

a sound is coming from and may also get

some sense of its distance from its

loudness and quality. A fast-moving sound

source (like a falling bomb or a passing

police car) will change in pitch as it moves

as a result of the Doppler Effect. Also, the

surroundings will affect the way sound is

reflected, so a voice inside a cave will

have an echo but the same voice in the

open air will not.

Fig6. Audio Recording Mechanism In

Unity

Audio Sources and Listener

To simulate the effects of position, Unity

requires sounds to originate from Audio

Sources attached to objects. The sounds

emitted are then picked up by an Audio

Listener attached to another object, most

often the main camera. Unity can then

simulate the effects of a source’s distance

https://docs.unity3d.com/Manual/GlobalIllumination.html
https://docs.unity3d.com/Manual/GlobalIllumination.html
https://docs.unity3d.com/Manual/class-Skybox.html
https://docs.unity3d.com/Manual/class-Skybox.html
https://docs.unity3d.com/Manual/HOWTO-UseSkybox.html
https://docs.unity3d.com/Manual/HOWTO-UseSkybox.html

9 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

and position from the listener object and

play them to the user accordingly. The

relative speed of the source and listener

objects can also be used to simulate the

Doppler Effect for added realism.

Unity can’t calculate echoes purely from

scene geometry but you can simulate them

by adding Audio Filters to objects. For

example, you could apply the Echo filter

to a sound that is supposed to be coming

from inside a cave. In situations where

objects can move in and out of a place

with a strong echo, you can add a Reverb

Zone to the scene. For example, your

game might involve cars driving through a

tunnel. If you place a reverb zone inside

the tunnel then the cars’ engine sounds

will start to echo as they enter and the echo

will die down as they emerge from the

other side.

The Unity Audio Mixer allows you to mix

various audio sources, apply effects to

them, and perform mastering.

The manual pages for Audio

Source, Audio Listener, Audio Mixer,

the audio effects and Reverb Zones give

more information about the many options

and parameters available for getting effects

just right.

Working with Audio Assets

Unity can import audio files

in AIFF, WAV, MP3 and Ogg formats in

the same way as other assets, simply by

dragging the files into the Project panel.

Importing an audio file creates an Audio

Clip which can then be dragged to an

Audio Source or used from a script. The

Audio Clip reference page has more

details about the import options available

for audio files.

For music, Unity also supports tracker

modules, which use short audio samples as

“instruments” that are then arranged to

play tunes. Tracker modules can be

imported from .xm, .mod, .it,

and .s3m files but are otherwise used in

much the same way as ordinary audio

clips.

Audio Recording

Unity can access the computer’s

microphones from a script and create

Audio Clips by direct recording.

The Microphone class provides a

straightforward API to find available

microphones, query their capabilities and

start and end a recording session. The

script reference page for Microphone has

further information and code samples for

audio recording.

Supported formats

Format Extensions

MPEG layer 3 .mp3

Ogg Vorbis .ogg

Microsoft Wave .wav

Audio Interchange File

Format

.aiff / .aif

Ultimate Soundtracker

SSmodule

.mod

Impulse Tracker module .it

Scream Tracker module .s3m

FastTracker 2 module .xm

Canvas

The Canvas is the area that all UI

elements should be inside. The Canvas is a

Game Object with a Canvas component on

it, and all UI elements must be children of

such a Canvas.

Creating a new UI element, such as an

Image using the menu GameObject > UI

> Image, automatically creates a Canvas,

if there isn’t already a Canvas in the scene.

The UI element is created as a child to this

Canvas.

The Canvas area is shown as a rectangle in

the Scene View. This makes it easy to

https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioListener.html
https://docs.unity3d.com/Manual/class-AudioMixer.html
https://docs.unity3d.com/Manual/class-AudioEffect.html
https://docs.unity3d.com/Manual/class-AudioReverbZone.html
https://docs.unity3d.com/ScriptReference/Microphone.html

10 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

position UI elements without needing to

have the Game View visible at all times.

Canvas uses the EventSystem object to

help the Messaging System.

Render Modes

The Canvas has a Render Mode setting

which can be used to make it render in

screen space or world space.

Screen Space - Overlay

This render mode places UI elements on

the screen rendered on top of the scene. If

the screen is resized or changes resolution,

the Canvas will automatically change size

to match this.

 Fig7.Ui In Screen Space Overlay Canvas

Anaylsis Of Game With Existing

Systems

Comparative Analysis

The morality system in this game is

usually hailed as unique and complex

because of its interdependent object

system. In closer observation, we found

that many other games are available in

market with same functionalities. In our

development phase, Age of Empire and

Clash of clan are at our target. Many

things like time management, object

depends on each other, score rate,

buildings drag and drop functionality etc.

are similar things that we have developed

according to these existing game. There is

major difference in between Innovating

India and Age of empire, Clash of Clan is

that, these games provide a fixed focus

camera mechanism in game but we have

provided a first person controller in game

which quite gives real experience of play

to the user. Another difference is that; Age

of Empire provides a different timeline and

game story like game started from dark

age and ended in modern age but we have

provided a village development up to the

smart city development.

Interpretation of Game

This type of analysis gives exact

information about what happens in the

game. When we observe game Innovating

India from particular standpoint, Game

shows village development extends up to

the modern smart city. In Innovating India

player has to collect coins, woods, foods

and then try to build a village by dragging

and dropping buildings. Each time score

will be updated. New building requires

more resources and player has to collect

more and more resources on terrain and

game continues. In this way, new

buildings gets available to player as he/she

moves in game and game ends with a

modern smart city.

Historical Analysis

As we have analyzed recent past of

gaming industries for development and

public interest in playing game; is

somewhat changing. The action, shooting

games are being avoided by public and

they are more attracted towards the

complex and strategic games. The Age of

Empire, 2002 worked very impressively

for understanding human development

through game play in past decade. Clash of

Clan, 2013 also the named as one of the

best android based strategic game with 50

million downloads. Both games did well

and still doing well in game industry. Both

games were using same game design,

functionalities, and game play mechanism.

They are the best strategic game for

decades.

11 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

ALGORITHMS IN GAMEPLAY

Crash and Turn

Let's start at point A, to find a way to point

B.

Try to move in a straight line as long as we

can.When an obstacle appears, choose one

of the two sides (left or right).Now go

around it using the left- or right-hand rule-

follow the object parallel to its sides until

we have open line of sight of the

destination again and thus can return to the

straight line of advance.

Fig 8. Crash And Turn Algorithm

Two possibilities are

1. Choosing the side that deviates less

from the initial trajectory

2. Choosing a random side

Crash and turn always finds a way from

origin to destination if we can guarantee

that obstacles are all convex and not

connected. The algorithm is quite

lightweight and thus can be implemented

with very low CPU impact.

A* Algorithm

The most popular algorithm for this

problem is called A* and basically builds

the graph at runtime, searching for the

shortest path from an initial state to the

end state. We need an algorithm that

somehow understands the difference

between a good path and a bad path, and

only examines the best candidates,

forgetting about the rest of the

 Let's Start with the base node, expand

nodes using the valid moves.

f(node)= g(node) + h(node)

 Where f(node) is the total score we

assign to a node.

 For now, suffice it to say that g(node)

is the portion that takes the past

decisions into consideration and

estimates the cost of the path we have

already traversed in moves to reach the

current state.

 The h(node) is the heuristic part that

estimates the future. Thus, it should

give an approximation of the number

of moves we still need to make to

reach our destination from the current

position.

Fig9. A* Algorithm

CONCLUSION

This paper gave an information about how

to develop game in Unity game engine.

Different key components of the assets

were studied and with the help of those

components different kind of assets were

designed in Maya Autodesk. Throughout

the development process of this game we

have learned many basic functionalities of

Unity game engine like camera settings,

UI elements and audio recording of scenes

as mentioned above. This paper briefs an

information about basic core algorithms

used in development of game play like

crash & turn and A* algorithm.

REFERENCES

1. http://citeseerx.ist.psu.edu/viewdoc/do

wnload?doi=10.1.1.435.1865&rep=rep

1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.435.1865&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.435.1865&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.435.1865&rep=rep1&type=pdf

12 Page 1-12 © MAT Journals 2017. All Rights Reserved

Journal of Android and IOS Applications and Testing

Volume 2 Issue 3

2. http://www.ijceronline.com/papers/Vol

2_issue4/P02410531059.pdf

3. http://yannakakis.net/wp-

content/uploads/2012/02/PhDThesis.p

df

4. http://users.csc.calpoly.edu/~fkurfess/4

80/F04/Misc/AI-Tools-Games.pdf

5. https://knowledge.autodesk.com/suppo

rt/maya

6. https://docs.unity3d.com/Manual/index

.html

http://www.ijceronline.com/papers/Vol2_issue4/P02410531059.pdf
http://www.ijceronline.com/papers/Vol2_issue4/P02410531059.pdf
http://yannakakis.net/wp-content/uploads/2012/02/PhDThesis.pdf
http://yannakakis.net/wp-content/uploads/2012/02/PhDThesis.pdf
http://yannakakis.net/wp-content/uploads/2012/02/PhDThesis.pdf
http://users.csc.calpoly.edu/~fkurfess/480/F04/Misc/AI-Tools-Games.pdf
http://users.csc.calpoly.edu/~fkurfess/480/F04/Misc/AI-Tools-Games.pdf
https://knowledge.autodesk.com/support/maya
https://knowledge.autodesk.com/support/maya
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html

