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Abstract 

Big Data can unify all patient related data to get a 360-degree view of the patient to analyze 

and predict outcomes. This investigation examines the concepts and characteristics of Big 

Data, concepts about Translational Bio Informatics and some public available big data 

repositories and major issues of big data. This issue covers the area of medical and 

healthcare applications and its opportunities.  
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Big Data Concepts 

Big data is a blanket term for the non-

traditional strategies and technologies 

needed to gather, organize, process, and 

gather insights from large datasets. 

Characteristics of big data can be 

described us 6 V’s, that are following 

Volume, Velocity, Variety, Value, 

Variability and Veracity [1, 2, 3] 

 

Volume 

It refers to as terabytes, petabytes, and 

zettabytes of data. This focus on near 

instant feedback has driven many big data 

practitioners away from a batch-oriented 

approach and closer to a real-time 

streaming system. Data is constantly being 

added, massaged, processed, and analyzed 

in order to keep up with the influx of new 

information and to surface valuable 

information early when it is most relevant.  

 

Variety  

While more traditional data processing 

systems might expect data to enter the 

pipeline already labeled, formatted, and 

organized, big data systems usually accept 

and store data closer to its raw state.  

 

Big data life cycle looks like 

So how is data really handled when 

managing with a big data framework? 

While ideas to exertion differ, there are 

some populace in the scenario and 

software that we can discuss for the most 

part. While the means exhibited 

underneath won't not be valid in all cases, 

they are broadly utilized. 

The general tier of task embroiled with big 

data processing is: 

 Ingesting data into the system 

 Persisting the data in storage 

 Computing and Analyzing data 

 Visualizing the results 

In Big data technology, we will take a 

moment to talk about clustered computing, 

an important strategy employed by most 

big data solutions. 

 

CLUSTERED COMPUTING 

Resource Pooling: Combining the 

available storage space to hold data is a 

clear benefit, but CPU and memory 

pooling is also extremely important.  
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High Availability: Clusters can provide 

varying levels of fault tolerance and 

availability guarantees to prevent hardware 

or software failures from affecting access 

to data and processing.  

 

Easy Scalability: Clusters make it easy to 

scale horizontally by adding additional 

machines to the group.  

There is often noisy data or false 

information in big data. The focus of Big 

Data is on correlations, not causality [4].  

 

CATEGORIES OF MEDICAL BIG 

DATA 

Data in healthcare can be categorized as 

follows.  

 

Genomic Data 

Such data are gathered by a bioinformatics 

system or genomic data processing 

software. Data sequencing analysis 

techniques and variation analysis are 

common processes performed on genomic 

data. The aim of genomic data analysis is 

to determine the functions of specific 

genes. It refers to genotyping, gene 

expression and DNA sequence [6, 7].  

 

Clinical Data 

A term defined in the context of a clinical t

rial for data pertaining to the health status 

of a patient or subject [8]. About 80% of 

this type data are unstructured documents, 

images and clinical or transcribed notes [9] 

Structured data (e.g., laboratory data, 

structured EMR/HER) 

 

Behaviour Data and Patient Sentiment 

Data 

Behavioural data refers to information 

produced as a result of actions, typically 

commercial behaviour using a range of 

devices connected to the Internet, such as a 

PC, tablet, or Smartphone. Behavioural 

data tracks the sites visited, the apps 

downloaded, or the games played. • Web 

and social media data Search engines, 

Internet consumer use and networking 

sites (Facebook, Twitter, Linkedin, blog, 

health plan websites and smartphone, etc.) 

[10] 

 

Clinical reference and health 

publication data 

It refers to reference data for clinical, 

claim, and business data to enable 

interoperability, drive compliance, and 

improve operational efficiencies.  

Text-based publications (journals articles, 

clinical research and medical reference 

material) and clinical text-based reference 

practice guidelines and health product 

(e.g., drug information) data [7, 12].  

 

Administrative, Business and External 

Data 

 Insurance claims and related financial 

data, billing and scheduling [10] 

 Biometric data: Fingerprints, 

handwriting and iris scans, etc 

 Other Important Data 

 Device data, adverse events and patient 

feedback, etc. [9] 

 The content from portal or Personal 

Health Records (PHR) messaging 

(such as e-mails) between the patient 

and the provider team; the data 

generated in the PHR Ingesting data 

into the system 

 Persisting the data in storage 

 Computing and Analyzing data 

 Visualizing the results 

 

Big data in Health Informatics:  

However, the scope of this study will be 

research that uses data mining in order to 

answer questions throughout the various 

levels of health[13].  

 

The scope of data used by the subfield 

TBI, on the other hand, exploits data from 

each of these levels, from the molecular 

level to entire populations [14].  

 
BIG DATA AND DRUG DISCOVERY 
In today drug discovery environment, Big 
Data plays a vital role due to its 5 V 
concepts. These databases provide 
information about the drugs, their adverse 
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reactions, 1chemical formula, information 
about metabolic pathways, drug targets, 
disease for which a particular drug is used 
etc. None of the existing 
pharmacogenomic databases carry the 
complete integrated information and hence 
there is a need to develop a database which 
integrates data from all the widely used 
databases [38]. 
Integrating big data analytics and 
validating drugs in silico has the potential 
to improve the cost-effectiveness of the 
drug development pipeline. Big data–
driven strategies are being increasingly 
used to address these challenges. 
Computational prediction of drug toxicity 
and pharmacodynamic/pharmacokinetic 
properties, based on integration of multiple 
data types, helps prioritize compounds for 
in vivo and human testing, potentially 
reducing costs[39]. 
 
DRUG DISCOVERY RELATED BIG 
DATA SOURCES 
Data sets and resources available on 
Related to drug discovery are scattered in 
various databases and online resources and 
most of these databases are interlinked 
based on the information they carry. Some 
of these databases include PharmGKB 
[40], DrugBank [41], CTD [42], Reactome 
[43], KEGG [46], STITCH [47], PACdb 
[48], dbGaP [49] IGVdb, PGP [50]. Brief 
explanation of the databases are given in 
the following section and also tabulated in 
table 2. 
 
PharmGKB 
PharmGKB is a pharmocogenomics 
database that carries all the clinical 
information along with the dosage 
guidelines, gene-drug associations and 
genotype phenotype relationships. It also 
has information about Variant 
Annotations, Clinical Annotations and 
Very Important Pharmacogene (VIP) 
summaries, drug-centered pathways. 
 
Drug Bank 
Drug Bank database is the open resource 
for drug, drug targets, and chemo 
informatics. It contains 11,067 drug entries 
including 2,525 approved small molecule 
drugs, 960 approved biotech 

(protein/peptide) drugs, 112 nutraceuticals 
and over 5,125 experimental drugs. 
Additionally, 4,924 non-redundant protein 
(i.e. drug 
target/enzyme/transporter/carrier) 
sequences are linked to these drug entries. 
Each Drug Card entry contains more than 
200 data fields with half of the information 
being devoted to drug/chemical data and 
the other half devoted to drug target or 
protein data. 
 
CTD 
The whole database is categorized in to 11 
types: 
Chemicals, genes, chemical-gene/protein 
interactions, diseases, gene-disease 
associations, chemical-disease 
associations, references, organisms, gene 
ontology, pathways and exposures.  
 
Reactome 
It has cross-referenced to several other 
databases such as Ensembl [44] and 
UniProt. The pathways within the database 
especially those pertaining to those in 
humans may be used for research and 
analysis, pathways modelling, systems 
biology as well as pharmacogenomics 
applications to analyze effects of drug 
pathway alterations on drug response and 
phenotypes [45]. 
 
KEGG  
It is an integrated resource of systems 
information (KEGG Pathways, KEGG 
Brite, KEGG Module, KEGG Disease, 
KEGG Drug and KEGG Environ), 
genomics information (KEGG Orthology, 
KEGG Genes, KEGG Genome, KEGG 
DGenes and KEGG SSDB) and chemical 
information (KEGG Compounds, KEGG 
Glycans, KEGG Reaction, KEGG RPair, 
KEGG RClass and KEGG Enzyme). 
 
STITCH 
STITCH (Search Tool for Interacting 
Chemicals) is a database of known and 
predicted interactions between chemicals 
and proteins. The interactions include 
direct (physical) and indirect (functional) 
associations; they stem from 
computational prediction, from knowledge 
transfer between organisms, and from 
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interactions aggregated from other 
(primary) databases. It also includes data 
on interactions between 210,914 small 
molecules and 9’643’763 proteins from 
2'031 organisms  
 
Other databases 
dpGaP (Database of Genotypes and 
Phenotypes) is database of genotype-
phenotype association studies, genome-
wide association studies, as well as 
associations between genotype and non-
clinical traits. It was developed to archive 
and distribute the data and results from 
studies that have investigated the 
interaction of genotype and phenotype in 
Humans. 
 
PACdb (Pharamacogenomics and Cell 
database) contains information on the 
relationships between SNPs, gene 
expression and cellular sensitivity to drugs 
analyzed in cell-based models. It is a 

Pharmacogenetics-Cell line database for 
use as a central repository of 
pharmacology-related phenotypes that 
integrates genotypic, gene expression, and 
pharmacological data obtained via 
lymphoblastoid cell lines. 90 YRI LCLs as 
well as ExiqonmiRNA baseline data from 
60 unrelated CEU and 60 unrelated YRI 
have been deposited in the PACdb 
database. 
 
IGVd (Indian Genome Variation database) 
contains information about SNP, CNVs in 
over 
1000 genes of biomedical important 
metabolic and genetic networks and also 
genes of pharmacogenetic relevance [51].  
 
There are many other biological databases 
such as Uniprot, GO, GenBank, PDB have 
cross-reference to above databases whose 
information may serve as essential source 
for drug and it related studies.

 

Table 1: Levels of Data 

Sections 
 Data level(s) 

Used 
 Subsections  

Question level(s) 

answered  
Questions to be answered 

Using Micro 

Level Data –

Molecules 

Molecular 

Using Gene Expression 

Data to Make Clinical 

Predictions 

Clinical 

1. What sub-type of cancer does 

a patient have? [18]    2. Will a 

patient have a relapse of cancer? 

[19] 

Using Tissue 

Level Data 

Tissue 

Creating a Connectivity 

Map of the Brain Using 

Brain Images 

Human-Scale 

Biology 

Can a full connectivity map of 

the brain be made [20,21]? 

Patient 
Using MRI Data for 

Clinical Prediction 
Clinical 

Do particular areas of the brain 

correlate to clinical events? [22] 

Using Patient 

Level Data 
Patient 

Prediction of ICU 

Readmission and 

Mortality Rate 

Clinical 

1. Should a patient be released 

from the ICU, or would they 

benefit from a longer stay?[23-

25]               2. What is the 5 

year expectancy of a patient 

over the age of 50? [26] 

Real-Time Predictions 

Using Data Streams 

1. What ailment does a patient 

have (real-time prediction) 

[27,28]  2. Is an infant 

experiencing a cardiorespiratory 

spell (real-time)? [29] 

Using Population 

Level Data – 

Social Media 

Population 

Using Message Board 

Data to Help Patients 

Obtain Medical 

Information 

Clinical 

Can message post data be used 

for dispersing clinically reliable 

information? [30,31] 

Tracking Epidemics 

Using Search Query Data 
Epidemic-Scale 

Can search query data be used to 

accurately track epidemics 

throughout a population? 

[32,33] 

Tracking Epidemics 

Using Twitter Post Data 
Epidemic-Scale 

Can Twitter post data be used to 

accurately 

track epidemics throughout a 

population?[34,35] 

http://www.exiqon.com/
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Table 2: Some Bio Informatics related Big Data Resources Which is publicly available 

Category  Name  Description  URL 

Literature mining PolySearch 2.0 Web-based text mining tool http://polysearch.cs.ualberta.ca 

Machine learning Weka 

Extensive library of machine learning 

algorithms with a user-friendly 

interface  

http://www.cs.waikato.ac.nz/ml/weka/ 

Cheminformatics 

Drug Bank 

Database 

Database of drug chemical, structural, 

pharmacological, and target 

information 

http://www.drugbank.ca 

PubChem 

Comprehensive database of structural, 

pharmacological, and biochemical 

activity data 

https://pubchem.ncbi.nlm.nih.gov/ 

Protein Data 

Bank 
Repository of protein structural data http://www.wwpdb.org 

admetSAR 

Web tool predicting pharmacological 

and toxicology parameters based on 

chemical structures 

http://lmmd.ecust.edu.cn:8000/ 

The Drug Gene 

Interaction 

Database 

(DGIdb) 

Database of known drug-gene 

connections for selected genes 
http://dgidb.genome.wustl.edu/ 

SIDER Database of drug adverse effects http://sideeffects.embl.de/ 

Library of 

Integrated 

Cellular 

Signatures 

(LINCS) 

Database of functional cellular 

responses to genetic and 

pharmacological perturbations 

measured in multiple types of 

biomolecules (eg,transcriptome and 

kinome) 

http://lincsportal.ccs.miami.edu/dataset

s/ 

ChemBank 

Database/knowledge base of high- 

throughput compound screens and 

other small molecule–related 

information 

http://chembank.broadinstitute.org/ 

Molecular 

pathway 

knowledgebase/ 

analysis tool 

DAVID 
Searchable/downloadable database of 

molecular pathway knowledge base 
https://david.ncifcrf.gov/ 

NDEx Biological network knowledge base http://www.home.ndexbio.org/ 

Molecular 

Signatures 

Database 

(MSigDb) 

Repository of molecular signatures 

from curated databases, publications, 

and research studies 

http://www.broadinstitute.org/msigdb 

Omics data 

repositories 

Gene Expression 

Omnibus 

Repository of raw and processed omics 

data 
http://www.ncbi.nlm.nih.gov/geo/ 

Sequence Read 

Archive 
Repository of sequencing data http://www.ncbi.nlm.nih.gov/sra 

Array Express 
Repository of raw and processed omics 

data 
https://www.ebi.ac.uk/arrayexpress/ 

The Cancer 

Genome Atlas 

Repository of genomic, proteomic,  

histological, and clinical data for a 

wide variety of cancers 

https://tcga-data.nci.nih.gov/tcga/ 

tcgaHome2.jsp 

 

CONCLUSION  

Big data is a broad, rapidly evolving topic. 

This survey discussed a number of recent 

studies being done within the most popular 

sub branches of Health Informatics, using 

Big Data from all accessible levels of 

human existence to answer questions 

throughout all levels. Analyzing Big Data 

of this scope has only been possible 

extremely recently, due to the increasing 

capability of both computational resources 

and the algorithms which take advantage 

of these resources. Research on using these 

tools and techniques for Health 

Informatics is critical, because this domain 

requires a great deal of testing and 

confirmation before new techniques can be 

applied for making real world decisions 
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across all levels. The fact that 

computational power has reached the 

ability to handle Big Data through efficient 

algorithms.  The use of Big Data provides 

advantages to Health Informatics by 

allowing for more tests cases or more 

features for research, leading to both 

quicker validations of studies.  
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