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Abstract 

Video Quality Assessment is one of the key words in the field of Quality of Service (QoS) for 

mobile phones, today. The goal of video quality assessment is to evaluate if a distorted video 

is of a good quality by quantifying the difference between the original and distorted video. To 

assess the video quality of an arbitrary distorted or compressed video, the visual features of 

the distorted video are compared with those of the original video. Objective video quality 

measures play important roles in a variety of video processing applications, such as 

compression, communication, printing, analysis, registration, restoration, enhancement and 

watermarking. Most proposed quality assessment approaches in the literature are error 

sensitivity-based methods. In this paper, we follow a new algorithm Structural Similarity 

(SSIM) Index in designing video quality metrics, which uses structural distortion as an 

estimate of perceived visual distortion. This algorithm is simple, straight forward, makes real 

time implementation easy, very consistent relation with the subjective measures and delivers 

more accurate results compared to other objective video quality measures MSE and PSNR 

and computationally efficient for full-reference (FR) video quality assessment.  

 

Keywords: Video quality assessment, human visual system, error sensitivity, full reference, 

structural distortion, video quality experts group (VQEG) 

 

INTRODUCTION 

The field of image and video processing 

deals with signals that are prepared for 

human consumption in general. Movies on 

DVDs or images and video over the 

Internet are some examples of such 
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signals. Before an image or video is 

presented to a human observer it goes 

through many stages of pre- and 

processing in most cases. Each stage of 

processing may introduce distortion and 

reduce the quality of the final display. One 

way to determine the quality of video is to 

ask opinions from human observers, but 

such a method is expensive and limited. 

That is why researchers pursue the goal to 

develop objective quality assessment 

methods that can automatically predict 

perceived image or video quality. These 

objective quality measurement methods 

are useful in a variety of image and video 

processing applications, such as 

compression, communication, printing, 

displaying, analysis, registration, 

restoration, enhancement and 

watermarking. Generally speaking, these 

methods can be employed in three ways. 

First, they can be used to monitor 

image/video quality for quality control 

systems. Second, they can be employed to 

benchmark image/video processing 

systems and algorithms. Third, they can 

also be embedded into image/video 

processing systems to optimize algorithms 

and parameter settings [1–5]. 

 

Currently, the most commonly used full-

reference (FR) objective image and video 

distortion/quality metrics are signal-to-

noise ratio (SNR), mean squared error 

(MSE) and peak signal-to-noise ratio 

(PSNR). MSE and PSNR are widely used 

because they are simple to calculate, have 

clear physical meanings, and are 

mathematically easy to deal with for 

optimization purposes. However, they 

have been widely criticized as well for not 

correlating well with perceived quality 

measurement. In the last three decades, a 

great deal of effort has been made to 

develop objective image and video quality 

assessment methods, which incorporate 

perceptual quality measures by 

considering human visual system (HVS) 

characteristics. The video quality experts 

group (VQEG) was formed to develop, 

validate and standardize new objective 

measurement methods for video quality. 

Although, the Phase I test for FR 

television video quality assessment only 

achieved limited success, VQEG continues 

its work on Phase II test for FR quality 

assessment for television, and reduced-

reference (RR) and no-reference (NR) 

quality assessment for television and 

multimedia [6 –8]. 

 

It is worth noting that many of the 

proposed objective image/video quality 

assessment approaches employ a common 
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error sensitivity-based philosophy which is 

motivated from psychophysical and 

physiological vision research. The basic 

principle is to think of the distorted signal 

being evaluated as the sum of a perfect 

quality reference signal and an error 

signal. The task of perceptual image 

quality assessment is then to evaluate how 

strong the error signal is perceived by the 

HVS according to the characteristics of 

human visual error sensitivity. 

 

THEORETICAL DESCRIPTION 

Methods for Video Quality Assessment 

There are two classes of assessment 

methods the subjective and objective. For 

a subjective test human viewers are 

required to rate the quality of video clips. 

In most testing scenarios, pairs of video 

clips are being compared, where one clip 

is the source (reference clip) and the other 

the degraded clip, which was processed in 

some manner. Subjective assessment is a 

costly and time consuming process, but 

yields accurate results for any given 

evaluation. This type of assessment is 

mainly necessary in situation such as final 

product evaluation and standardization 

processes where quality must be assured. 

Instead of a human viewer watching the 

video clips, objective test methods 

examine the actual video signal. With the 

introduction of digital video technologies, 

visually noticeable artifacts appear, that 

are different from the analogue artifacts. 

Therefore, new objective test methods are 

needed. The new measurement methods 

analyse the video signal in the video image 

space employing knowledge of the HVS. 

An algorithm tries to measure the spatial 

degradation of the video images and the 

temporal alignment degradation of the 

sequence [9–13]. 

 

The objective quality measurement 

methods have been classified into the 

following five main categories depending 

on the type of input data that is being used 

for quality assessment:  

 

Media-Layer Models 

These models use the speech or video 

signal to compute the Quality of 

Experience (QoE). These models do not 

require any information about the system 

under testing; hence can be best applied to 

scenarios such as codec comparison and 

codec optimization. 

 

Parametric Packet-Layer Models 

Unlike the media layer models, the 

parametric packet-layer models predict the 

QoE only from the packet-header 

information and do not have access to 
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media signals. But this forms a lightweight 

solution for predicting QoE as it does not 

have to process the media signals. 

 

Parametric Planning Models 

These models make use of quality 

planning parameters for networks and 

terminals to predict the QoE. As a result 

they require a priori knowledge about the 

system that is being tested. 

 

Bitstream-Layer Models 

These models use encoded bitstream 

information and packet-layer information 

that is used in parametric packet-layer 

models for measuring QoE. 

 

Hybrid Models 

These models mainly combine two or   

more of the preceding models. 

 

The media-layer objective quality 

assessment methods can be further 

categorized as full-reference (FR), 

reduced-reference (RR), and no-reference 

(NR) depending on whether a reference, 

partial information about a reference, or no 

reference is used in assessing the quality, 

respectively. Full- and reduced-reference 

methods are important for the evaluation 

of video systems in non-real-time 

scenarios where both (i) the original 

(reference) video data or a reduced feature 

data set, and (ii) the distorted video data 

are available. 

 

Compression Artifacts 

The quality of the degraded video 

sequence is mainly affected by two factors, 

the compression and the transmission. On 

the compressor side, the algorithms using a 

block-based discrete cosine transform 

(DCT) and quantization of the DCT 

coefficients to compress the images and to 

reduce temporal or frame-to-frame 

redundancies. In this coding schemes, 

compression distortions are caused by this 

operation, namely in the quantization. 

Other factors affecting the visual quality 

are motion prediction and the size of the 

decoding buffer. Compression artifacts are 

usually correlated with movement in the 

pictures. Distortion can be divided into 

spatial and temporal coding distortions. 

Some of them are: Blockiness, Blurring, 

Ringing, Mosquito Noise and Quantization 

Noise and Jerkiness. 

 

Transmission Errors 

One source of distortion is the 

transmission of the bit stream over a noisy 

channel. For most applications the bit 

stream needs to be transported in such a 

way that it can be decoded and displayed 



  

 

 

 

 

5 Page 1-15 © MAT Journals 2016. All Rights Reserved 

 

 
Journal of Electronics and Communication Systems  

Volume 1 Issue 2  

 

in real time. By transporting media over a 

noisy channel two types of impairments 

can occur. Packets can be lost or they can 

be delayed to the point where they are not 

received in time for decoding. Both cases 

have the same effect: some parts of the 

media stream are not available, packets are 

missing. Loss in data does not only mean a 

loss in the data relevant to the corrupted 

block, it can also affect a stream up to a 

fully (intra-coded) received frame. The 

visual effects of lost or corrupted packets 

are depending from the decoder’s ability to 

deal with the bit stream. Some apply 

concealment methods in order to minimize 

the errors, while others never recover from 

certain errors [14, 15]. 

 

DISCUSSION 

Structural Distortion Measurement 

The commonly used full-reference 

objective image and video 

distortion/quality metrics mean squared 

error (MSE) and peak signal-to-noise ratio 

(PSNR) are widely uses because they are 

simple to calculate and mathematically 

easy to deal with. But because they do not 

correlate well with perceived quality 

measurements, they have been criticized. 

Great effort has been made to develop 

objective image and video quality 

assessment methods, which consider the 

HVS characteristics. Most of the proposed 

models share a common error sensitivity-

based philosophy, which is motivated from 

psychophysical and physiological vision 

research. It follows the principle to think 

of a distorted signal being evaluated as the 

sum of a perfect quality reference signal 

and an error signal. The task of a video 

quality assessment algorithm is then to 

predict how strong the error signal is 

perceived by the HVS according to the 

characteristics of the human visual error 

sensitivity. 

  

The structural distortion measurement is 

based on the fact, that natural image 

signals are highly structured. By a 

structural signal the strong dependencies 

between the samples is described. Most 

error sensitivity-based approaches are 

using the so-called Minkowski error 

metrics, which is independent of the signal 

structure, by using point wise signal 

differencing. Therefore, the motivation of 

the proposed approach is to find a way to 

compare the structures of the reference and 

the distorted signals. 

 

The main differences of the new approach 

from the error-sensitivity-based 

philosophy are the following: 

1. Image degradations are considered as 
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perceived structural loss instead of 

perceived errors. 

2. The new approach is a top-down 

approach simulating the hypothesized 

functionality of the overall HVS. The 

error-sensitivity-based philosophy uses 

a bottom-up approach by simulating 

the function of each relevant 

component in the HVS and combines 

them together. 

3. Error-sensitivity based philosophy has 

issues like “suprathreshold” problem 

and “natural image complexity”.  

 

Structural Similarity (SSIM) Index 

There may be different implementations of 

the new philosophy, depending on how the 

concepts of “structural information” and 

“structural distortion” are interpreted and 

quantified. Here, from an image formation 

point of view, we consider the “structural 

information” in an image as those 

attributes that reflect the structure of the 

objects in the scene, which is independent 

of the average luminance and contrast of 

the image. This leads to an image quality 

assessment approach that separates the 

measurement of luminance, contrast and 

structural distortions. Structural similarity 

(SSIM) index measurement system 

diagram is shown in Figure 1 Let x and y 

be two non-negative signals that have been 

aligned with each other (e.g., two image 

patches extracted from the same spatial 

location from two images being compared, 

respectively), and let µx, µy, 
2

x, 
2

y and 

 xy be the mean of x, the mean of y, the 

variance of x, the variance of y, and the 

covariance of x and y, respectively. Here, 

the mean and the standard deviation 

(square root of the variance) of a signal are 

roughly considered as estimates of the 

luminance and the contrast of the signal. 

The covariance (normalized by the 

variance) can be thought of as a 

measurement of how much one signal is 

changed nonlinearly to the other signal 

being compared. 

 

We define the luminance, contrast and structure comparison measures as follows:  

   l(x, y)  
2x  y ,       c(x, y)  

2 x y ,     s( x, y)  


 xy 

(1)  

x
2
y

2
 x

2
y

2
 xy 

 

      
 

 

Notice that these terms are conceptually 

independent in the sense that the first two 

terms only depend on the luminance and 

the contrast of the two images being 

compared, respectively, and purely 

changing the luminance or the contrast of 



  

 

 

 

 

7 Page 1-15 © MAT Journals 2016. All Rights Reserved 

 

 
Journal of Electronics and Communication Systems  

Volume 1 Issue 2  

 

either image has no impact on the third 

term. Geometrically, s(x, y) corresponds to 

the cosine of the angle between the vectors 

x - µ x and y - µ y, independent of the 

lengths of these vectors. Although, s(x, y) 

does not use a direct descriptive 

representation of the image structures, it 

reflects the similarity between two image 

structures-it equals one if and only if the 

structures of the two image signals being 

compared are exactly the same (recall that 

we consider structural information as those 

image attributes other than the luminance 

and contrast information). 

 

When (µ 
2

x+ µ 
2

y) (
2

x+
2

y) ≠ 0, the similarity index measure between x and y corresponds 

to 

 

 

FIG. 1: DIAGRAM OF THE STRUCTURAL SIMILARITY (SSIM) MEASUREMENT SYSTEM. 

 

If the two signals are represented discretely as x = { xi | i = 1, 2, ..., N} and y = { yi | i = 1, 

2, ..., N}, then the statistical features can be estimated as 

follows:

           S ( x, y)  l(x, y) . c(x, y) . s(x, y)  

 

4x  y  xy 
          

                                     (2) 

 

  

( x
2
    y

2
 ) ( x

2
    y

2
 ) 
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One problem with (2) is that when (µ 
2

x+ µ 

2
y) or ( 

2
x+ 

2
y) is close to 0, the 

resulting measurement is unstable. This 

effect has been frequently observed in our 

experiments, especially over flat regions in 

images. In order to avoid this problem, we 

have modified equation (2). The resulting 

new measure is named the Structural 

Similarity (SSIM) index between signals x 

and y: 

      SSIM ( x, y)  
    ( 2x  y  C1 )      ( 2 xy  C2 )  

 

   

    (6) 
 

 

    

            (x
2
   y

2
  C1) ( x

2
   y

2
  C2) 

 

Two constants, C1 and C2, are added which are given by: 

C1 = (K1L)
2
     and        C2 = (K2L)

2
 , 

                                  

(7) 

  

 

Where L is the dynamic range of the pixel 

values (for 8 bits/pixel gray scale images, 

L = 255), and K1 and K2 are two constants 

whose values must be small such at C1 or 

C2 will take effect only when (µ 
2

x+ µ 
2

y) 

or ( 2
x+  2

y) is small. Throughout the 

project, we set K1 = 0.01 and K2 = 0.03, 

respectively. 

 

The SSIM index satisfies the following 

conditions: 

 

1. Symmetry: SSIM (x, y) = SSIM (y, x); 

2. Boundedness: SSIM (x, y) ≤ 1;  

3. Unique maximum: SSIM (x, y) = 1 if 

and only if x = y ( in discrete 

representations, xi = yi for all i = 1, 

2,...,N). 

 

Based on the philosophy described before, 

if we consider one of the image signals 

being compared to have perfect quality, 

then the SSIM index provides a 

quantitative measurement of the quality of 
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the other image signal. The SSIM indexing 

algorithm is applied for quality assessment 

of still images using a sliding window 

approach. The window size is fixed to be 8 

x 8 in this paper. The SSIM indices are 

calculated within the sliding window, 

which moves pixel-by-pixel from the top-

left to the bottom-right corner of the 

image. This results in a SSIM index map 

of the image, which is also considered as 

the quality map of the distorted image 

being evaluated. The overall quality value 

is defined as the average of the quality 

map, or, equivalently, the mean SSIM 

(MSSIM) index. 

  

VIDEO QUALITY ASSESSMENT 

A hybrid video quality assessment method 

was developed, where the proposed quality 

indexing approach (with C1 = C2 = 0) was 

combined with blocking and blurring 

measures as well as a texture classification 

algorithm. In this paper, we attempt to use 

a much simpler method, which employs 

the SSIM index as a single measure for 

various types of distortions.

 

     

Fig. 2: Proposed Video Quality Assessment System. 

 

The diagram of the proposed video quality 

assessment system is shown in Figure 2 

the quality of the distorted video is 

measured in three levels: the local region 

level, the frame level, and the sequence 

level. First, local sampling areas are 

extracted from the corresponding frame 

and spatial locations in the original and the 

distorted video sequences, respectively. 

The sampling areas are randomly selected 

8 X 8 windows. This is different from the 

method used for still images where all 

possible sampling windows are selected 

since the sliding window moves pixel-by-

pixel across the whole image. Instead, only 

a proportion of all possible 8 X 8 windows 

are selected here. We use the number of 

sampling windows per video frame (Rs) to 



  

 

 

 

 

10 Page 1-15 © MAT Journals 2016. All Rights Reserved 

 

 
Journal of Electronics and Communication Systems  

Volume 1 Issue 2  

 

represent the sampling density. Our 

experiments show that properly selected 

Rs can largely reduce computational cost 

while still maintains reasonably robust 

measurement results. The SSIM indexing 

approach is then applied to the Y, Cb and 

Cr color components independently and 

combined into a local quality measure 

using a weighted summation. 

 

Let SSIM ij
Y
 ,  SSIM ij

Cb
 and  SSIM ij

Cr
 denote the SSIM index values of the Y, Cb and Cr 

components of the j-th sampling window in the i-th video frame, respectively. 

The local quality index is given by 
  

                                        SSIM ij   WY SSIM ij
Y
   WCb SSIM ij

Cb
   WCr SSIM ij

Cr
                 (8)                                                                                       

   (8) 

Where, the weights are fixed in our experiments to be WY = 0:8, WCb = 0:1 and WCr = 0:1, 

respectively. In the second level of quality evaluation, the local quality values are combined 

into a frame-level quality index using: 

   Rs  
 

   ∑ Wij  SSIM ij  
 

Q 
 
 

j 1 
(9)  

i         Rs  

     
∑ Wij  
j 1 

 

Where, Qi denotes the quality index 

measure of the i-th frame in the video 

sequence, and wij is the weighting value 

given to the j-th sampling window in the i-

th frame. Finally in the third level, the 

overall quality of the entire video sequence 

is given by 

   F  
 

   ∑ Wj Qi  
 

Q 
 
 

i 1 
 (10)  

i         F  

     
∑ Wi 
i 1 

 

Where, F is the number of frames and Wi is the weighting value assigned to the i-th frame. If 

all the frames and all the sampling windows in every frame are considered equally then 

wij  = 1 

                    Rs   

for all i,j And Wi  =  ∑ wij  = Rs      for all i .          (11)  

                                                                                j=1 

This leads to a quality measure equalling 

the average SSIM index measurement of 

all sampling windows in all frames. Such a 

weighting assignment method may not be 

optimal because different regions and 

different frames may be of different 
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importance to the human observers. 

Optimal weighting assignment is difficult 

because many psychological aspects are 

involved, which may depend on the 

content and context of the video sequence 

being observed. However, certain 

appropriate adjustments around the 

selection of all-equal-weighting may help 

to improve the prediction accuracy of the 

quality assessment algorithm. 

 

In this paper, two simple adjustment 

methods are employed. The first is based 

on the observation that dark regions 

usually do not attract fixations, therefore, 

should be assigned smaller weighting 

values. We use the mean value x (as 

given in (3)) of the Y component as an 

estimate of the local luminance, and the 

local weighting is adjusted as: 

 

 0   x  40   
 

w   ( 
x 
40) /10 40 <  

x 
≤ 50.      (12)12) 

ij      

 1   x > 50   
 

 

 

The second adjustment considers the case 

when very large global motion occurs. 

Note that some image distortions are 

perceived differently when the background 

of the video is moving very fast (usually 

corresponds to high speed camera 

movement). For example, severe blurring 

is usually perceived as a very unpleasant 

type of distortion in still images or slowly 

moving video. However, the same amount 

of blur may not be as important in a large 

motion frame, perhaps because large 

perceptual motion blur occurs at the same 

time. Such kind of differences cannot be 

captured by the intra-frame SSIM index, 

which does not involve any motion 

information. Our experiments also indicate 

that the proposed algorithm performs less 

stable when very large global motion 

occurs. Therefore, we give smaller 

weighting to the large motion frames to 

improve the robustness of the algorithm. 

First, for each sampling window, we use a 

block-based motion estimation algorithm 

to evaluate its motion with respect to its 

adjacent next frame. Suppose mij 

represents the motion vector length of the 

j-th sampling window in the i-th frame, 

then the motion level of the i-th frame is 

estimated as 

 (∑
Rs

 mij ) / Rs   

M i   
j 1 

 (13)  K
 M 
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Where KM is a constant that serves as a normalization factor of the frame motion level. We 

uses KM = 16 in our experiment. The weighting of frame is then adjusted by: 

 

      ∑
Rs Wij  Mi ≤ 0.8  

 j 1    

Wi =      ((1.2 - Mi)/0.4) ∑
Rs  wij 0.8 < Mi ≤ 1.2    (14) 

                    j 1    

 0  Mi > 1.2  

 

SIMULATION RESULTS 

We use video with different types of 

distortions to test the Structural Similarity 

Index (SSIM) method of video quality 

assessment. In this project we tested the 

video, which is distorted by wide variety 

of corruptions: additive Gaussian noise, 

impulsive salt-pepper noise, multiplicative 

speckle noise and blurring with different 

values of variances, say 0.05, 0.01 and 0.1 

and computed results are tabulated in 

Tables 1 and 2. It can be observed from 

the results of the SSIM method that more 

is the value of the Q, more is the quality of 

the video. 

Table 1: Quality Measurement of Video with Different Types of Noises. 

S. 

No. 

Distortion 

Type 
Variance Quality Variance Quality Variance Quality 

1 
Gaussian 

Noise 
0.01 21.2533 0.05 21.2177 0.1 21.0821 

2 
Salt-Pepper 

Noise 
0.01 1.4376 x 104 0.05 1.0426 x 103 0.1 41.8104 

3 Speckle Noise 0.01 243.1863 0.05 22.3425 0.1 8.9974 

 

Table 2: Quality Measurement of Video with Motion Blurred. 

S. No. Type of Blurring Correlation/Convolution Video  Quality (Q) 

1 Symmetric Correlation 2.9041 x 104 

2 Symmetric Convolution 2.9041 x 104 

3 Replicate Correlation 2.9372 x 104 

4 Replicate Convolution 2.9372 x 104 

5 Circular Correlation 2.8592 x 104 

6 Circular Convolution 2.8592 x 104 
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The new quality index exhibits very 

consistent correlation with the subjective 

measures. Our experimental results 

indicate that it outperforms the MSE 

significantly under different types of 

image distortions. It is perhaps surprising 

that such a simple mathematically defined 

quality index performs so well without any 

HVS model explicitly employed. The 

success of this quality index is due to its 

strong ability in measuring structural 

distortion occurred during the video 

degradation process. This is a clear 

distinction with MSE, which is sensitive to 

the energy of errors, instead of structural 

distortion. 

 

CONCLUSION 

We designed a new objective video quality 

assessment system. Our experimental 

results indicate that it outperforms the 

MSE significantly under different types of 

image distortions.  

The key feature of the proposed method is 

the use of structural distortion instead of 

error sensitivity based measurement for 

quality evaluation. Experiments on VQEG 

FR-TV Phase I test dataset show that it has 

good correlation with perceived video 

quality. One of the most attractive features 

of the proposed method is perhaps its 

simplicity. Note that no complicated 

procedures (such as spatial and temporal 

filtering, linear transformations, object 

segmentation, texture classification, blur 

evaluation, and blockiness estimation) are 

involved. This implies that the SSIM index 

is a simple formula that inherently has 

effective normalization power for various 

types of image structures and distortions. 

The simplicity of the algorithm also makes 

real-time implementation easy. In addition, 

the speed of the algorithm can be further 

adjusted by tuning the parameter of frame 

sampling rate Rs. Our experiments show 

that reasonably robust performance can be 

obtained with a relatively small sampling 

rate (e.g., Rs < 100), allowing real-time 

software implementation on moderate 

speed computers. The proposed method 

has been found to be consistent with many 

observations of HVS behaviours. For 

example, the blocking artifact in JPEG 

compressed images may significantly 

impair the “structure” in smooth image 

regions, but is less disturbing in highly 

textured regions. This is captured very 

well in the quality maps. However, there 

are other HVS characteristics that may not 

be well understood with the proposed 

method. For example, vertical distortions 

may appear more significant than 
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horizontal distortions. It remains a 

problem that how to systematically 

connect and adjust the proposed quality 

index in accordance with psychophysical 

and physiological HVS studies. 

 

Future Work 

In order to improve the proposed 

algorithm, many issues need further 

investigations in the future. One important 

issue is related to motion. The current 

SSIM index is oriented for comparison of 

still image structures. Notice that there are 

several significant outliers, where the 

model gives much lower scores than they 

should supply. In fact, most of these 

significant outliers correspond to the video 

sequences with large global motions (such 

as SRC5, SRC9 and SRC19 in the VQEG 

Phase I test dataset). So far, no method has 

been found to naturally incorporate motion 

information into the SSIM index measure. 

We have attempted to apply the same 

SSIM index measure as in (6) for 3-

dimensional windows (instead of the 

current intra-frame 2-dimensional 

windows). Unfortunately, no significant 

improvement has been observed. Another 

issue is regarding the case of burst of - 

error. For example, when most of the 

frames in a video sequence have high 

quality, but only a few are damaged and 

have extremely low quality, the human 

observers tend to give a lower quality 

score than averaging all the frames. To 

solve this problem, a non-linear pooling 

method (instead of weighted summation 

used in this project) may need to be 

applied. Furthermore, how to measure and 

incorporate colour distortions also needs 

more investigations. 
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