Study on Machine Learning and Deep Learning Methods for Cancer Detection
Abstract
Full Text:
PDFReferences
S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras, and M. Tzivras, “Computer-aided tumor detection in endoscopic video using color wavelet features,” IEEE Trans. Inf. Technol. Biomed., vol. 7, no.3, pp. 141–152, Sep. 2003. 2. S. Bae and K. Yoon, “Polyp detection via imbalanced learning and discriminative feature learning,” IEEE Trans. Med. Imag., vol. 34, no. 11, pp. 2379–2393, Nov. 2015. 3. S. Park, M. Lee, and N. Kwak, “Polyp detection in colonoscopy videos using deeply-learned hierarchical features,” Seoul Nat. Univ., 2015. 4. Yann Lecun, "Deep Learning," NATURE, vol. 521, Mei 2015.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates,
Inc., 2012, pp. 1097–1105.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.
A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Advances in neural information processing systems, pp. 1097-1105, 2012.
Refbacks
- There are currently no refbacks.