Spatio-temporal geostatistical modeling of hydrogeochemical parameters in the San Diego aquifer, Venezuela

Dr. Adriana Márquez Romance, Dr. Edilberto Guevara Pérez, Dr. Demetrio Rey Lago

Abstract


The study is developed a spatio-temporal geostatistical modeling of hydrogeochemical parameters in the San Diego aquifer, Carabobo State, Venezuela during the period 2015-2017. ; which includes: 1) Collection of information as: a) Meteorological, b) Lithological profiles, c) pumping flow, d) water dynamic levels, e) Landsat Satellite Images and f) Digital Elevation Model. 2) Processing of information, including: a) Calibration of geostatistical models, b) validation of geostatistical models, c) calibration of forecast model, and d) application of forecast model. 3) Generation of Results, including: maps of the hydrogeochemical parameters showing spatio-temporal distribution of following parameters: Precipitation, Evapotranspiration, Pumping Flow, Infiltration, Volume Stored, Physico-chemical Parameters (PCP), Hydraulic Parameters, Mass Flow of PCP. The meteorological information has been gotten from the telemetric network of 31 climate monitoring stations close to San Diego aquifer managed by the National Institute of Meteorology and Hydrology belonging to Ministry of the Environment.  The database of water levels, physico-chemical parameters and pumping flow consists of 1201 pumping wells in the Carabobo State.  The San Diego aquifer is confined aquifer. Hydrological processes in the San Diego aquifer such as infiltration and permeability are influenced by the impermeability in the urban area of the Sand Diego aquifer, which is around 20% of the total area, reducing the contribution rates to the aquifer water. The division between the main water compositions corresponding to the water classes is coincident with the division of rocky material according to the geological periods triassic and quaternary, being the water classes:  1) Bicarbonate of Calcium and/or Magnesium Ca–Mg–HCO3 (North and Central regions, 95.16 km2, 81.25%) 2) Bicarbonate of Sodium Na–HCO3 (Central and South regions, 19.32 km2, 16.5%), 3) Sulfate or Chloride of Calcium and/or Magnesium Ca-Mg-SO4 and Ca-Mg-Cl (South region, 0.96 km2, 0.82%), 4) Sulfate and/or Chloride of Sodium Na-SO4 and Na-Cl (South region, 1.68 km2, 1.43%).  In the south region, the water is highly mineralized and its composition corresponds to the classes 2-4.  In the south region, it might be occurring an inverse hydraulic gradient from Valencia Lake to San Diego aquifer during the dry season, incorporating the water of the Valencia Lake to the San Diego aquifer and increasing the concentration

Full Text:

PDF

References


Bear, J., & Cheng, A. H. D. (2010). Modeling groundwater flow and contaminant transport (Vol. 23). Springer Science & Business Media.

Box, G. E. P., Jenkins, G. M., and Reinsel G. C. (1994). Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3-4), 294-313.

FAO, 2013. Monitoring of Climate Change Risk Impacts of Sea Level Rise onGroundwater and Agriculture in the Nile Delta. TCP/EGY/3301.

INE (2001). Censo 2001. Instituto Nacional de Estadísticas. Available: http://www.ine.gov.ve/index.php?option=com_content&view=category&id=95&Itemid=9. Date: 08-11-2018.

INE (2011). Censo. Instituto Nacional de Estadísticas. Available: http://www.ine.gov.ve/index.php?option=com_content&view=category&id=95&Itemid=9. Date: 08-11-2018.

IESA (1998) Carabobo: Competitividad para el desarrollo volumen XI.

Isaaks, E. H., & Srivastava, M. R. (1989). Applied geostatistics (No. 551.72 ISA).

Gandin, L.S., 1960. On optimal interpolation and extrapolation of meteorological fields. Trudy Main Geophys. Obs. 114, 75–89.

Guevara Pérez, E. (2000). Diagnóstico de la situación ambiental y ecológica del Estado Carabobo. Revista Ingeniería UC, 7(1).

Guevara, E., & Cartaya, H. (2004). Hidrología ambiental. Facultad de Ingeniería de la Universidad de Carabobo. Valencia, Venezuela.

Goovaerts, P., Webster, R., & Dubois, J. P. (1997). Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environmental and ecological Statistics, 4(1), 49-64.

Gorai, A. K., & Kumar, S. (2013). Spatial distribution analysis of groundwater quality index using GIS: a case study of Ranchi Municipal Corporation (RMC) area. Geoinform Geostat Overv, 1, 2.

Hackley, P. C., Urbani, F., Karlsen, A. W., & Garrity, C. P. (2005). Geologic shaded relief map of Venezuela (No. 2005-1038).

Hengl, T. (2009). A practical guide to geostatistical mapping (Vol. 52). Hengl.

Howari, F. M., Sherif, M. M., Singh, V. P., & Al Asam, M. S. (2007). Application of GIS and remote sensing techniques in identification, assessment and development of groundwater resources. In Groundwater (pp. 1-25). Springer, Dordrecht.

Kranjc, A. (Ed.), 1997. Karst hydrogeological investigations in South-Western Slovenia. Acta Carsologica 26 (1) (388 pp).

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119-139.

Mabrouk, M.B., Jonoski, A., Solomatine, D., Uhlenbrook, S., 2013. A review ofseawater intrusion in the Nile Delta groundwater system −the basis forassessing impacts due to climate changes and water resources development.Hydrol. Earth Syst. Sci. 10, 10873–10911, Discussions.

Marotz, G. (1968). Technische Grundlagen einer Wasserspeicherung im natürlichen Untergrund. Eigenverl. d. Instituts f. Wasserwirtschaft, Grundbau u. Wasserbau d. Universität Stuttgart.

Martos-Rosillo, S., & Moral, F. (2015). Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, Southern Spain). Journal of Hydrology, 528, 249-263.

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.

Matthess, G., & Ubell, C. (2003). Allgemeine Hydrogeologie, Grundwasserhaushalt–Lehrbuch der Hydrogeologie Bd. 1. Gebrüder Borntraeger, Berlin, Stuttgart.

Molle, F., Gaafar, I., El-Agha, D. E., & Rap, E. (2018). The Nile delta's water and salt balances and implications for management. Agricultural Water Management, 197, 110-121.

Morsy, W.S., (2009). Environmental Management to Groundwater Resources for NileDelta Region, PhD Thesis. Faculty of Engineering, Cairo University, Egypt.

Merkel, B. J., Planer-Friedrich, B., & Nordstrom, D. K. (2005). Groundwater geochemistry. A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems, 2.

Pérez, E. G., & Romance, A. M. (2012). Modelación de la infiltración en un campo agrícola de la cuenca del río Chirgua, estado Carabobo, Venezuela. Revista Científica UDO Agrícola, 12(2), 365-388.

Piper, A.M., (1944). A graphic procedure in the geochemical interpretation of water-analyses. American Geophysical Union. Papers, Hydrology, pp. 914–923.

Ramirez, L. E. (1971). Development of a Procedure for Determining Spacial and Time Variations of Precipitation in Venezuela.

Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental monitoring and assessment, 162(1-4), 123-137.

Trezza, R. (2006). Evapotranspiration from a Remote Sensing Model for Water Management in an irrigation system in Venezuela. Interciencia, 31(6).

Urbani, F. (2016). Synthesis of the nomenclature of the igneous and metamorphic rocks units of the cordillera de la costa, venezuela. Revista de la Facultad de Ingeniería, 31(2).

Vižintin, G., Ravbar, N., Janež, J., Koren, E., Janež, N., Zini, L., ... & Petrič, M. (2018). Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy). Science of The Total Environment, 619, 1214-1225.

Wang, Y., Ma, T., & Luo, Z. (2001). Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. Journal of hydrology, 246(1-4), 223-234.

Wendland, E., Barreto, C. E. A. G., & Gomes, L. H. (2007). Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. Journal of Hydrology, 342(3-4), 261-269.

Zeidan, B.A., 2016. Groundwater Monitoring, Modeling and Assessment in the NileDelta (Unpublished chapter).


Refbacks

  • There are currently no refbacks.