Outlier Based Fraud Detection System
Abstract
Full Text:
PDFReferences
Aggarwal, C.C., 2015. Data Mining: The Textbook. Springer, New York, NY.Aggarwal, C.C., Reddy, C.K. (Eds.), 2013. Data Clustering: Algorithms andApplications. CRC Press, Boca Raton, FL, USA.
Ahmed, M., Naser, A., 2013. A novel approach for outlier detection and clusteringimprovement, in: Proceedings of the 8th IEEE Conference on IndustrialElectronics and Applications (ICIEA), pp. 577–582.
Aparna, K., Nair, M.K., 2016. Computational Intelligence in Data Mining.Springer. volume 2. chapter Effect of Outlier Detection on Clustering Accuracyand Computation Time of CHB K-Means Algorithm. pp. 25–35.
Chawla, S., Gionis, A., 2013. k-means: A unified approach to clustering and
outlier detection. SIAM. chapter 20. pp. 189–197.
Dave, R., Krishnapuram, R., 1997. Robust clustering methods: a unified view.IEEE Transactions on Fuzzy Systems 5, 270–293.
Duan, L., Xu, L., Liu, Y., Lee, J., 2009. Cluster-based outlier detection. Annalsof Operations Research 168, 151–168.
Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Y.Zomaya, A., Khalil, I., Foufou,S., Bouras, A., 2014. A survey of clustering algorithms for big data: Taxonomyamp; empirical analysis. IEEE Transactions on Emerging Topics inComputing PP, 1–1
Refbacks
- There are currently no refbacks.